

Nuclear New Horizons: Fueling our Future October 21-25, 2019 - Santos, SP, Brazil

João Vitor M. da Silva, Sergio Gavazza, Domingos D'Oliveira Cardoso, Marcos Paulo C. de Medeiros e Gabriela M. Duarte

1 INTRODUÇÃO

1.1 OBJETIVO

2 MATERIAIS E MÉTODOS

3 RESULTADOS

4 CONCLUSÕES

5 PRINCIPAIS REFERÊNCIAS

INTRODUÇÃO

- Verticalização das construções é uma tendência mundial;
- Construção de clínicas de radiologia e diagnóstico por imagem, hospitais, entre outros, contendo salas de radioterapia, máquinas de raios-X, aceleradores lineares será necessária;
- Chumbo material mais utilizado, baixo valor de mercado, entretanto muito denso, inviabilizando o uso em construções verticais.

OBJETIVO

Identificar a melhor disposição de materiais em uma blindagem multilaminada, de quatro camadas, por meio da determinação do Fator de Transmissão (FT) para cada blindagem configuração da através de métodos analíticos lineares e modelagem computacional.

MATERIAL ESPESSURA

Concreto ordinário Alumínio Ferro Chumbo

- 24 arranjos de blindagem, dados os 4 materiais.
- Fonte pontual, isotrópica e monoenergética de 0,661657 MeV.

Cálculo Analítico:

a. Determinação dos coeficientes de atenuação linear (μ) para cada material, por meio de interpolações de acordo com Foderaro (1976);

Tabela 1 – Coeficientes de atenuação linear (μ), em cm⁻¹, para cada material de blindagem.

Energia (MeV)	Materiais	µ (cm⁻¹)
0,661657	Chumbo	1,434325
	Alumínio	0,207278
	Concreto ordinário	0,186218
	Ferro	0,592510

b. Cálculo da **atenuação exponencial** (A_E) por da Equação 1, proveniente da Lei de atenuação;

$$A_E(\mu_1 \cdot x_1; \mu_2 \cdot x_2; \mu_3 \cdot x_3; \mu_4 \cdot x_4) = e^{-\sum_{i=1}^4 (\mu_i \cdot x_i)}$$
(1)

c. Cálculo de *buildup* para cada material, para meio infinito, através da Equação 2, Fórmula de Taylor, segundo Chilton (1984);

$$B_T(\mu, x) = A_1 \cdot e^{-\alpha \cdot \mu \cdot x} + (1 - A_1) \cdot e^{-\beta \cdot \mu \cdot x}$$
(2)

d. Após levantados o fatores de *buildup* com a Fórmula de Taylor, calculou-se o *buildup* de Broder (B_B) das blindagens multilaminadas, conforme proposto por Broder *et al.* (1962) na Equação 3.

 $B_{B}(\mu_{1}, x_{1}; \mu_{2}, x_{2}; \mu_{3}, x_{3}; \mu_{4}, x_{4}) = [B_{1}(l_{1}) + B_{2}(l_{1} + l_{2}) + B_{3}(l_{1} + l_{2} + l_{3}) + B_{4}(l_{1} + l_{2} + l_{3} + l_{4})] - [B_{2}(l_{1}) + B_{3}(l_{1} + l_{2}) + B_{4}(l_{1} + l_{2} + l_{3})$ (3)

e. Conhecendo os valores de A_E e B_B , por meio da Lei de Atenuação, representada pela Equação 4 determinou-se o FT;

$$FT = \frac{I}{I_0} = e^{-\sum_{i=1}^4 (\mu_i \cdot x_i)} B_B(\mu_1 \cdot x_1; \mu_2 \cdot x_2; \mu_3 \cdot x_3; \mu_4 \cdot x_4)$$
(4)

- Modelagem Computacional:
 - Empregou-se o software Monte Carlo n-Particle (MCNP), baseado no Método de Monte Carlo (MMC);
 - Mesmas características utilizadas no cálculo analítico.

Figura 1: Cenário de simulação, sem o volume de controle.

- Simulação de:
 - Dose absorvida de radiação (MeV/g) Tally F6;
 - Fluxos de radiação (MeV) Tally *F8;

Não é considerado o *buildup*, uma vez que este ocorre naturalmente na trajetória do fóton.

➢ Fator de Transmissão.

RESULTADOS

Tabela 5 – Valores de FT, para cada arranjo de blindagem multilaminar, por modelagem computacional e pelo método analítico.

<u>Combinações</u>	Arranjo	FT (F6)	FT (*F8)	FT (Analítico)
1	Chumbo Alumínio Concreto Ferro	0,407138	0,433257	0,565952
6	Chumbo Ferro Alumínio Concreto	0,404800	0,398412	0,569194
15	Concreto Ferro Chumbo Alumínio	0,373833	0,388674	0,548387
17	Concreto Alumínio Ferro Chumbo	0,362013	0,387951	0,541586
24	Ferro Chumbo Concreto Alumínio	0,384206	0,388602	0,558598

RESULTADOS

Gráfico 1: Comparação entre os tallies F6 e *F8 com os resultados do cálculo analítico dos valores dos FT, para cada arranjo de blindagem multilaminada.

RESULTADOS

Gráfico 2: Desvios percentuais, entre os FT, relativos as diferenças entre os resultados obtidos por simulação computacional e por métodos analíticos.

CONCLUSÕES

- No método analítico, existe correlação entre as densidades e a eficiência das combinações (6 e 17), o que não ocorre na modelagem computacional;
- Os FT calculados, com os *Tallies* F6 e *F8, é uma forma de validação para o método analítico;
 - Diferença insignificante entre os valores determinados.
- Resultados analíticos apresentam boa concordância;
 - Soluções analíticas mais simples, economia de tempo computacional.
- Melhor arranjo no sentido fonte-detector: concreto, alumínio, ferro e chumbo;
- Metodologia aplicada se mostrou eficiente, sendo considerada a sua aplicação em projetos futuros.
 ¹⁵

PRINCIPAIS REFERÊNCIAS

Chilton, J. K. Shultis, R. E. Faw. Principles of Radiation Shielding. Prentice-Hall, INC. Englewood Cliffs, NJ, EUA, 1984.

Foderaro. **The Photon Shielding Manual**. University Park Pennsylvania, PA, EUA, 1976.

D. L. Broder et al., "Atomnaja Energija", 12, p. 26-31, 1962.

F. H. Attix, **Introduction to radiological physics and radiationdosimetry**, John Wiley & Sons, 1986. ISBN 0-471-01146-0.

L. Tauhata, I. Salati, R. Di Prinzio, A. R. Di Prinzio. **Radioproteção e Dosimetria: Fundamentos**. Comissão Nacional de Energia Nuclear, Instituto de Radioproteção e Dosimetria, Rio de Janeiro, RJ, 10^a rev-2014.

XIVENAN

VIENI

XXIENEIR

www.ime.eb.br

gabrimduarte@outlook.com