Main Features of the Research Reactor Core Simulator RINNOVO

Erwin Müller¹, Bo Berggren¹, Petri Forslund Guimarães² and Björn Eklöf¹ ¹CompuSim AB <u>erwin.muller@compusim.se</u> ²GuimaSoft Computing

Presentation Layout

- Introduction
- RINNOVO Computational Methods
- Engineering Features and Automation
- GUI Example
- Future Efforts and Work

Introduction

- RINNOVO is a new <u>industrial-quality</u> research reactor core simulator developed by CompuSim AB in Sweden
 - Earmarked <u>tool</u> for practical day-to-day applications in support of <u>reactor operation</u> and planning
 - Particularly suited to facilities with commercial <u>radioisotope production</u>
- RINNOVO is a full 3D core simulator and fast core reload tool based on an advanced nodal diffusion theory model
 - Highly <u>accurate predictions</u> of core reactivity and power distribution at <u>low computational cost</u>
 - Modeling of any facility loaded with rectangular or hexagonal fuel assemblies

- Nodal flux solver
 - Based on Multi-group Analytical Nodal Method (MANM)
 - <u>Multi-group</u> treatment is essential to capture the strong neutron leakage and spectral interaction effects of the small, very heterogeneous, high-leakage research reactor cores
 - Strong spatial variation of flux needs a method of **small discretization error**
 - Application of modern homogenization theory in terms of incorporating <u>discontinuity factors</u> in nodal coupling in combination with use of spatially smeared cross sections
 - An advanced nodal method <u>orders of magnitude faster</u> than finite-difference methods for the same level of accuracy
 - Use of advanced homogenization methods impractical with finite-difference methods

- Nodal flux solver (cont.)
 - Nodal flux solution of both the <u>eigenvalue</u> problem and extraneous <u>fixed</u> <u>source</u> problems
 - Nodal mathematical <u>adjoint</u> solution to the forward eigenvalue problem
 - Assessment of reactivity coefficients
 - Various iteration methods available based on either fission or transverseleakage source driven schemes
 - Multi-level nested iteration procedure with feedback, outer (eigenvalue) and inner iterations
 - Acceleration by means of Wielandt eigenvalue shift for outers and Cyclic Chebyshev Semi-Iterative (CCSI) or Successive Over-Relaxation (SOR) for inners
 - Slow or divergent convergence addressed by automated switch between schemes

- Core component depletion and history management methods
 - Adequate data management of individual component depletion histories
 - Individual tracking of the full depletion history of each component in the reactor facility
 - Each component tracked using its **own spatial exposure mesh**
 - Use of <u>HDF5</u> to store and manage such history data
 - Microscopic depletion of \approx 35-100 nuclides using a predictor-corrector scheme
 - Depletion of beryllium reflectors
 - Solution of the (very) stiff nuclide transmutation equations without any burnup chain linearization
 - Robust and generic method accounting for feedback reactions (cyclic chain)
 - Matrix exponential by truncated Taylor series with uniformization technique
 - Elimination of catastrophic cancellation/round-off error
 - Numerically stable and controlled by user tolerance

- Shutdown cooling and decay heat model
 - Implementation of the latest decay heat model of the American National Standard (ANSI/ANS-5.1- 2014)
 - Based on very detailed tracking of the decay heat precursor concentrations during standard depletion calculations
 - No use of any simplified approaches to estimate historical fission rates of fuel
 - Accurate and up-to-date assessment of the decay heat of each individual fuel assembly both within and outside the core (e.g., in the fuel pool)
 - Shutdown cooling assessment by utilizing the regular nuclide decay calculations
 - Nuclide decay during reactor downtime periods
 - Long term fuel pool decay heat estimation

- Detailed treatment of burnable absorbers
 - Local and heterogeneous depletion of burnable absorbers
 - Essential for tracking thin wires with for example cadmium
 - Application of a reconstructed local flux for depletion
 - More representative of the actual neutron flux in burnable absorber locations
 - On-the-fly homogenization of burnable absorber macroscopic cross sections
 - Performed during the nodal core calculation itself
 - Account for the impact of "explicit" burnable absorber depletion on nodal cross sections
 - **<u>Profound impact</u>** on predicted core reactivity and power distribution

- Nodal cross section representation model
 - Cross section data represented by a <u>second order polynomial expansion</u> with dependence on the fuel and moderator temperature, moderator density and xenon concentration
 - <u>Fitting coefficients</u> are computed by the data interface code latXS2Nodal currently based on Serpent2 lattice physics calculations and are **tabulated as function of burnup**
 - Additional corrections due to isotopic tracking and intra-nodal cross section variation (spectrum/depletion history effects)
 - An in-line <u>axial homogenization</u> procedure invoked to account for any axial material variations
 - Node-average cross sections and axial discontinuity factors for the nodal flux solver
 - Essential for eliminating reactivity cusping effects due to control rod movements
 - Essential for handling follower-type control rods with fuel as follower material

- Kinetics model
 - Time-dependent diffusion equation solved by means of a <u>fully implicit</u> time integration scheme
 - Analytic integration of the delayed neutron precursor equations
 - Time stepping algorithm monitors time variation of the dynamic solution
 - Automated adjustment of kinetics time step size
- Determination of water properties in RINNOVO
 - A water-steam property library implemented based on the latest IAPWS Industrial Formulation for the Thermodynamic Properties of Water and Steam
 - Implementation covers all the specified forward and backward equations

Engineering Features and Automation

- Shuffling and loading of physically loadable core components
 - Movements of fuel assemblies, reflector assemblies and irradiation rigs
 - GUI tools provide drag-and-drop functionality to perform these actions
- Maintenance of component lifetime history files
 - No user interaction needed besides providing data file paths to RINNOVO
 - Viewing and exporting any component isotopic inventory at any time
- In-cycle reload operations of irradiation rigs
 - Insertion and/or removal, or axial adjustment of position during reactor cycle without need for creating sub-cycle reload and restart simulation cases
 - Automatic update of relevant core load and history files

Engineering Features and Automation

- Exclusion of heat (thermal power) of self-cooled irradiation rigs from core thermal power
 - No manual adjustments to core power and cycle burnup estimations needed
- Automated calculation of reactivity temperature coefficients
- Automated calculation of SDM, core shutdown reactivity and clean excess reactivity
- Automated calculation of integral and differential reactivity worths of control rods
- Automated calculation of in-cycle irradiation rig reactivity worth

Engineering Features and Automation

- Estimation of End-of-Cycle (EOC) termination based on a userselected state parameter
 - Target value utilized to determine EOC condition
 - Static multiplication factor
 - Control rod insertion fraction
 - Accumulated cycle energy
 - Useful for core reload design, cycle length estimations and outage planning
- Calculation and visualization of thermal load parameters and peaking factors
 - Core hot spot factor automatically computed and associated fuel assembly identified

GUI Example

Future Efforts and Work

- <u>Efforts up to today</u> have focused on establishing a functional, industrialstandard core simulator built on robust and state-of-the-art technology
- <u>Current efforts</u> focus on lattice physics data coupling functionality
 - RINNOVO coupling to Serpent2 and other lattice physics codes via latXS2Nodal
- In the future, attention will be given to
 - Development of a steady-state thermal hydraulics module
 - Coupling of the kinetics module to a system code such as RELAP5
 - Development of advanced homogenization and leakage methods and further improving the cross section representation model of RINNOVO
 - Coupling of RINNOVO to DAKOTA for sensitivity and uncertainty analyses

