

ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN 2019 International Nuclear Atlantic Conference - INAC 2019 Santos, SP, Brazil, October 21-25, 2019



## MULTIPLICATION FACTOR $(k_{eff})$ SENSITIVITY ANALYSIS IN RELATION TO THE VOID OF A FAST BREEDER REACTOR

João Domingos **Talon**; Sergio de Oliveira **Vellozo** – D.Sc; Ronaldo Glicério **Cabral** – Ph.D; João Cláudio Batista **Fiel** – D.Sc.

Date: Oct 21st, 2019.







- 1. Introduction
- 2. Fast Breeder Reactor (FBR)
- 3. Methodology
- 4. Results
- 5. Conclusions
- 6. References



# 1. Introduction



• Nuclear reactor design requires complex numerical calculations due to the detailed geometric structure and composition variation.

• Analytical solution permits a better understanding of the response to a specific parameter perturbation.

• A nuclear core design starts with a simple model so the equations can be solved without numerical methods.



## 1. Introduction



• This work focus on an analytical model considering a sphere geometry, compare the results of SCALE/KENO VI code with those from diffusion approximation for one energy group obtained with a FORTRAN program.



# 2. Fast Breeder Reactor (FBR)





- Rg A and E natural uranium. Oxide Moisture - MOX:
- Rg B PuO<sub>2</sub> 25% UO<sub>2</sub>.- 75%;
- $\text{Rg C} \text{PuO}_2 33\% \text{UO}_2 67\%;$
- Rg D PuO<sub>2</sub> 42% UO<sub>2</sub> 58%.

- The FBR is cooled by sodium liquid, has a hexagonal prism form, a heterogeneous core with five regions, height and diameter of 180cm.
- Fuel PuO<sub>2</sub> its main characteristic, independent of enriched uranium.



# 3. Methodology



- One energy group diffusion analytical study;
- One dimensional system;
- Five concentric spheres.

 $R_A = 20.582$ cm;

$$R_B = 35.583$$
cm;  
 $R_C = 42.354$ cm;  
 $R_D = 48.395$ cm;

 $R_{\rm E} = 94.429$ cm.

Spheric coordenates:

$$\nabla^2 \Phi = \frac{\mathrm{d}^2 \left( r \Phi \right)}{r \mathrm{d} \mathrm{r}^2}$$









Analitical study: one energy group.

Reactor governing equations:

$$-D_i \nabla^2 \Phi_i + \Sigma a_i \Phi_i = \frac{\nu_i \Sigma_{f_i}}{k_{eff}} \Phi_i; \ i = A, \ B, \ C, \ D \ and \ E$$

$$\nabla^2 \Phi_i + \frac{1}{D_i} \left[ \frac{\nu_i \Sigma_{f_i}}{k_{eff}} - \Sigma_{a_i} \right] \Phi_i = 0;$$

- $D_i$  diffusion coefficient;
- $\nabla^2$  laplacian operator;
- $\Phi_i$  flux distribution;

 $\Sigma_{a_i}$  - absorption macroscopic cross section;  $\Sigma_{f_i}$ - fission macroscopic cross section;

 $\nu_i$  - mean neutrons released in each fission;

 $k_{eff}$  - effective multiplication factor.







### Analitical study: one energy group.

Reactor governing equations:

$$\nabla^2 \Phi_i + K_i^2 \Phi_i = 0$$

where  $K_i^2 = \frac{1}{D_i} \left[ \frac{\nu_i \Sigma_{f_i}}{k_{eff}} - \Sigma_{a_i} \right].$ 

For regions A and E,  $K_i^2 < 0$  and regions B, C and D,  $K_i^2 > 0$ .

With only radial dependence governing equation can be written for each region as:

$$\frac{1}{r}\frac{d^2(r\Phi_i)}{dr^2} + K_i^2\Phi_i = 0$$







Analitical study: one energy group.

The solution for each region is:

$$\Phi_{A} = C_{1} \frac{\sinh(K_{1}r)}{r} + C_{2} \frac{\cosh(K_{1}r)}{r}$$

$$\Phi_{B} = C_{3} \frac{\sin(K_{2}r)}{r} + C_{4} \frac{\cos(K_{2}r)}{r}$$

$$\Phi_{C} = C_{5} \frac{\sin(K_{3}r)}{r} + C_{6} \frac{\cos(K_{3}r)}{r}$$

$$\Phi_{D} = C_{7} \frac{\sin(K_{4}r)}{r} + C_{8} \frac{\cos(K_{4}r)}{r}$$

$$\Phi_{E} = C_{9} \frac{\sinh(K_{5}r)}{r} + C_{10} \frac{\cosh(K_{5}r)}{r}$$







### Analitical study - boundary conditions:

Considering the neutron flux  $\Phi_A$  finite at r = 0 (i), so we have  $C_2 = 0$ ; thus:

$$\Phi_A = C_1 \frac{\sinh(K_1 r)}{r}$$

Also, considering the neutron flux and current density equality in the regions frontiers, follows:

Flux continuity (ii)  $\Phi_A (R_A) = \Phi_B (R_A)$  (iii)  $D_A \frac{d\Phi_A}{dr} (R_A) = D_B \frac{d\Phi_B}{dr} (R_A)$ (iv)  $\Phi_B (R_B) = \Phi_C (R_B)$  (v)  $D_B \frac{d\Phi_B}{dr} (R_B) = D_C \frac{d\Phi_C}{dr} (R_B)$ (vi)  $\Phi_C (R_C) = \Phi_D (R_C)$  (vii)  $D_C \frac{d\Phi_C}{dr} (R_c) = D_D \frac{d\Phi_D}{dr} (R_C)$ (viii)  $\Phi_D (R_D) = \Phi_E (R_D)$  (ix)  $D_D \frac{d\Phi_D}{dr} (R_D) = D_E \frac{d\Phi_E}{dr} (R_D)$ 







### Analitical study - boundary conditions:

For  $r = R_E$ , the partial neutron reentering current is zero and we may write it as:

$$(x) \ J_{-E} = 0 = \frac{\Phi_E}{4} + \frac{D_E}{2} \frac{d\Phi_E}{dr}$$

The normalization condition is defined as below (xi):

$$\begin{aligned} \int_{r=0}^{r_A} (-D_A \nabla^2 \Phi_A + \Sigma a_A \Phi_A) dv &+ \int_{r=r_A}^{r_B} (-D_B \nabla^2 \Phi_B + \Sigma a_B \Phi_B) dv + \\ \int_{r=r_B}^{r_C} (-D_C \nabla^2 \Phi_C + \Sigma a_C \Phi_C) dv &+ \int_{r=r_C}^{r_D} (-D_D \nabla^2 \Phi_D + \Sigma a_D \Phi_D) dv + \\ &\int_{r=r_D}^{r_E} (-D_E \nabla^2 \Phi_E + \Sigma a_E \Phi_E) &= \frac{1}{s} \end{aligned}$$

where,  $dv = 4\pi r^2 dr$ .







Analitical study -  $k_{eff}$  calculation:

To calculate  $k_{eff}$  in this new approach we take diffusion equation. Integrating over the whole reactor volume we get:

$$k_{eff} = A_A \frac{\nu_A \Sigma_{f_A}}{\Sigma_{a_A}} + A_B \frac{\nu_B \Sigma_{f_B}}{\Sigma_{a_B}} + A_C \frac{\nu_C \Sigma_{f_C}}{\Sigma_{a_C}} + A_D \frac{\nu_D \Sigma_{f_D}}{\Sigma_{a_D}} + A_E \frac{\nu_E \Sigma_{f_E}}{\Sigma_{a_E}}$$

where,

$$A_A = \int_{r=0}^{r_A} \Sigma_{a_A} \Phi_A dv; \ A_B = \int_{r=r_A}^{r_B} \Sigma_{a_B} \Phi_B dv; \ A_C = \int_{r=r_B}^{r_C} \Sigma_{a_C} \Phi_C dv;$$

 $A_D = \int_{r=r_C}^{r_D} \Sigma_{a_D} \Phi_D dv; \ A_E = \int_{r=r_D}^{r_E} \Sigma_{a_E} \Phi_E dv.$ 







### Analitical study - reactivity coefficient calculation:

$$\alpha = \frac{\rho_{Vd} - \rho_{NVd}}{\frac{V_{Vd}}{V_{cool}}}$$

#### where,

| $\rho_{Vd} = \frac{k_{eff_{Vd}} - 1}{k_{eff_{Vd}}}$    | reactivity with void;    |
|--------------------------------------------------------|--------------------------|
| $\rho_{NVd} = \frac{k_{eff_{NVd}} - 1}{k_{eff_{NVd}}}$ | reactivity without void; |
| $V_{Vd}$                                               | void volume;             |
| $V_{cool}$                                             | coolant volume.          |







- A FORTRAN language program was built to perform calculations in order to obtain results concerning to neutron absorption, leakage, flux radial distribution, the reactor  $k_{eff}$  and reactivity coefficient values.
- The results were analyzed and compared with those obtained using SCALE code.







### Group constants calculated by the SCALE code.

### Tables 1 - Group constants considering no void.

|                     | Region A    | Region B    | Region C    | Region D     | Region E    |
|---------------------|-------------|-------------|-------------|--------------|-------------|
| $^{(a)}\Sigma_{tr}$ | 0.21325     | 0.19206     | 0.18725     | 0.18241      | 0.21325     |
| $^{(b)}\Sigma_a$    | 3.93154E-03 | 6.91455E-03 | 7.89135E-03 | 9.02257E-03  | 3.93154E-03 |
| $^{(c)}\nu\Sigma_f$ | 1.37568E-03 | 1.23526E-02 | 1.57379E-02 | 1.96054 E-02 | 1.37568E-03 |

Tables 2 - Group constants considering 5.87% of void on each region.

|                     | Region A    | Region B    | Region C    | Region D    |
|---------------------|-------------|-------------|-------------|-------------|
| $^{(a)}\Sigma_{tr}$ | 0.15899     | 0.17853     | 0.17320     | 0.17138     |
| $^{(b)}\Sigma_a$    | 3.36409E-03 | 6.77542E-03 | 7.75785E-03 | 1.96088E-02 |
| $^{(c)}\nu\Sigma_f$ | 1.29415E-03 | 1.23005E-02 | 1.57094E-02 | 1.96088E-02 |

- <sup>(a)</sup> $\sum_{tr}$  transport cross section;
- <sup>(b)</sup> $\sum_{a}$  absorption cross section;
- $^{(c)}v\sum_{f}$  mean neutrons released in each fission and fission cross section.



## 3. Results



Neutron flux radial distribution for the reactor core without void inserted. The maximum neutron flux value is observed on region B and decreases until near zero at radius equal  $R_E$ .





## 3. Results



XIV ENAN

VIENIN

|                         | No Void      | Void A      | Void P      | Void C       | Void D       | XXIENFIR |
|-------------------------|--------------|-------------|-------------|--------------|--------------|----------|
|                         | NO VOIU      | Volu A      | VOID D      | Volu C       | Vold D       | _        |
| $^{(a)}A_A$             | 2.54899 E-02 | 2.25959E-02 | 2.55832E-02 | 2.53465 E-02 | 2.53885 E-02 | _        |
| $A_B$                   | 0.19398      | 0.19559     | 0.19070     | 0.19292      | 0.19311      |          |
| $A_C$                   | 0.16453      | 0.16504     | 0.16539     | 0.16178      | 0.16362      |          |
| $A_D$                   | 0.18547      | 0.18580     | 0.18625     | 0.18668      | 0.18359      | -        |
| $A_E$                   | 0.31548      | 0.31584     | 0.31665     | 0.31751      | 0.31823      | -        |
| $^{(b)}A_{To}$          | 0.88495      | 0.88488     | 0.88458     | 0.88424      | 0.88395      | -        |
| $^{(c)}F$               | 0.11505      | 0.11512     | 0.11542     | 0.11576      | 0.11605      | -        |
| $^{(d)}k_{effA}$        | 8.91915E-03  | 8.69252E-03 | 8.95177E-03 | 8.86896E-03  | 8.88366E-03  | _        |
| $k_{effB}$              | 0.34653      | 0.34943     | 0.34621     | 0.34465      | 0.34499      | -        |
| $k_{effC}$              | 0.32813      | 0.32915     | 0.32984     | 0.32761      | 0.32631      |          |
| $k_{effD}$              | 0.40302      | 0.40373     | 0.40471     | 0.40564      | 0.40322      | -        |
| $k_{effE}$              | 0.11039      | 0.11052     | 0.11079     | 0.11109      | 0.11135      | _        |
| $^{(e)}k_{effCa}$       | 1.19698      | 1.20153     | 1.20051     | 1.19786      | 1.19476      | _        |
| $^{(f)}k_{effIn}$       | 1.19698      | 1.20152     | 1.20051     | 1.19786      | 1.19476      | -        |
| $^{(g)}k_{effSc}$       | 1.1465       | 1.1467      | 1.1457      | 1.1455       | 1.1448       | _        |
| $^{(h)}\delta_{kSc-Ca}$ | 4.40         | 4.78        | 4.78        | 4.57         | 4.36         | _        |
| $^{(i)}\alpha_{Ca}$     | -x–x-        | 0.05379     | 0.04186     | 0.01042      | -0.02653     | _        |
| $^{(j)}\alpha_{Sc}$     | -x-x-x-      | 0.00302     | -0.00951    | -0.01211     | -0.02163     | -        |

- <sup>(a)</sup> Absorptions on regions A, B, C, D and E
- (b) Total absorption
- <sup>(c)</sup> Neutron leakage
- <sup>(d)</sup> k<sub>eff</sub> partial for regions A, B, C, D and E
- <sup>(e)</sup> k<sub>eff</sub> calculated by FORTRAN program
- $^{(\mathrm{f})}$   $k_{\mathrm{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{\rm eff}$  calculated by SCALE code
- ${}^{(h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$  ~ and  $k_{eff}Ca$
- <sup>(i)</sup> Alpha-α calculated by FORTRAN program
- ${}^{(j)}$  Alpha- $\alpha$  calculated by SCALE code



## 3. Results



|                | No Void      | Void A      | Void B      | Void C       | Void D      |
|----------------|--------------|-------------|-------------|--------------|-------------|
| $^{(a)}A_A$    | 2.54899 E-02 | 2.25959E-02 | 2.55832E-02 | 2.53465 E-02 | 2.53885E-02 |
| $A_B$          | 0.19398      | 0.19559     | 0.19070     | 0.19292      | 0.19311     |
| $A_C$          | 0.16453      | 0.16504     | 0.16539     | 0.16178      | 0.16362     |
| $A_D$          | 0.18547      | 0.18580     | 0.18625     | 0.18668      | 0.18359     |
| $A_E$          | 0.31548      | 0.31584     | 0.31665     | 0.31751      | 0.31823     |
| $^{(b)}A_{To}$ | 0.88495      | 0.88488     | 0.88458     | 0.88424      | 0.88395     |

- Total absorption maximum value occurs for the condition without void (0.88495).
- As the void is inserted the respective absorption value decreases assuming the minimum value on region D.

- <sup>(a)</sup> Absorptions on regions A, B, C, D and E
- (b) Total absorption
- <sup>(c)</sup> Neutron leakage
- <sup>(d)</sup> k<sub>eff</sub> partial for regions A, B, C, D and E
- (e) k<sub>eff</sub> calculated by FORTRAN program
- $^{(\mathrm{f})}$   $k_{\mathrm{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{eff}$  calculated by SCALE code
- ${}^{(h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$  % = and  $k_{eff}Ca$
- <sup>(i)</sup> Alpha-α calculated by FORTRAN program
- $^{(i)}$  Alpha- $\alpha$  calculated by SCALE code



| $^{(b)}A_{To}$ | 0.88495 | 0.88488 | 0.88458 | 0.88424 | 0.88395 |
|----------------|---------|---------|---------|---------|---------|
| $^{(c)}F$      | 0.11505 | 0.11512 | 0.11542 | 0.11576 | 0.11605 |

• The neutron leakage increases from the value of 0.11505 on the condition without void until the maximum one 0.11605 for the condition with void on region D.

- (a) Absorptions on regions A, B, C, D and E
- (b) Total absorption
- <sup>(c)</sup> Neutron leakage
- <sup>(d)</sup> k<sub>aff</sub> partial for regions A, B, C, D and E
- (e) k<sub>eff</sub> calculated by FORTRAN program
- $^{(\mathrm{f})}$   $k_{\mathrm{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{\text{eff}}$  calculated by SCALE code
- ${}^{(h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$  % = and  $k_{eff}Ca$
- (i) Alpha- $\alpha$  calculated by FORTRAN program
- $^{(i)}$  Alpha- $\alpha$  calculated by SCALE code







| No Void | Void A | Void B | Void C | Void D | XXIENFIR XIVENAN VIE |
|---------|--------|--------|--------|--------|----------------------|

- The maximum  $k_{eff}$  value calculated (1.20153).
- As void is inserted on the other regions (B, C and D) the  $k_{eff}$  value calculated decreases.

| $^{(d)}k_{effA}$  | 8.91915E-03 | 8.69252E-03 | 8.95177E-03 | 8.86896E-03 | 8.88366E-03 |
|-------------------|-------------|-------------|-------------|-------------|-------------|
| $k_{effB}$        | 0.34653     | 0.34943     | 0.34621     | 0.34465     | 0.34499     |
| $k_{effC}$        | 0.32813     | 0.32915     | 0.32984     | 0.32761     | 0.32631     |
| $k_{effD}$        | 0.40302     | 0.40373     | 0.40471     | 0.40564     | 0.40322     |
| $k_{effE}$        | 0.11039     | 0.11052     | 0.11079     | 0.11109     | 0.11135     |
| $^{(e)}k_{effCa}$ | 1.19698     | 1.20153     | 1.20051     | 1.19786     | 1.19476     |

- Is important observe that all of them are bigger than the  $k_{eff}$  value calculated for the condition without void (1.19698), excepted  $k_{eff}$  value calculated for void inserted on region D (1.19476).
  - <sup>(a)</sup> Absorptions on regions A, B, C, D and E
  - (b) Total absorption
  - <sup>(c)</sup> Neutron leakage
  - <sup>(d)</sup> k<sub>eff</sub> partial for regions A, B, C, D and E
  - (e) k<sub>eff</sub> calculated by FORTRAN program
- $^{(f)}$   $k_{\text{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{\text{eff}}$  calculated by SCALE code
- ${}^{(h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$  % = and  $k_{eff}Ca$
- (i) Alpha- $\alpha$  calculated by FORTRAN program
- $^{(i)}$  Alpha- $\alpha$  calculated by SCALE code



• The  $k_{eff}$  value by SCALE code has the same behavior.

| $^{(e)}k_{effCa}$ | 1.19698 | 1.20153 | 1.20051 | 1.19786 | 1.19476 |
|-------------------|---------|---------|---------|---------|---------|
|                   |         |         |         |         |         |
| $^{(g)}k_{effSc}$ | 1.1465  | 1.1467  | 1.1457  | 1.1455  | 1.1448  |

- <sup>(a)</sup> Absorptions on regions A, B, C, D and E
- (b) Total absorption
- <sup>(c)</sup> Neutron leakage
- <sup>(d)</sup> k<sub>eff</sub> partial for regions A, B, C, D and E
- <sup>(e)</sup> k<sub>eff</sub> calculated by FORTRAN program
- $^{(\mathrm{f})}$   $k_{\mathrm{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{\text{eff}}$  calculated by SCALE code
- ${}^{(h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$   $% k_{eff}Ca$  and  $k_{eff}Ca$
- <sup>(i)</sup> Alpha-α calculated by FORTRAN program
- <sup>(j)</sup> Alpha-α calculated by SCALE code



• Comparing the  $k_{eff}$  values calculated by the FORTRAN program and those by SCALE code the results show a deviation ( $\delta_{ks}$ ) that varies from 4.36% (with void on region D) to 4.78% (with void on region B).

| $^{(e)}k_{effCa}$       | 1.19698 | 1.20153 | 1.20051 | 1.19786 | 1.19476 |
|-------------------------|---------|---------|---------|---------|---------|
|                         |         |         |         |         |         |
| $^{(g)}k_{effSc}$       | 1.1465  | 1.1467  | 1.1457  | 1.1455  | 1.1448  |
| $^{(h)}\delta_{kSc-Ca}$ | 4.40    | 4.78    | 4.78    | 4.57    | 4.36    |

- <sup>(a)</sup> Absorptions on regions A, B, C, D and E
- <sup>(b)</sup> Total absorption
- <sup>(c)</sup> Neutron leakage
- <sup>(d)</sup> k<sub>eff</sub> partial for regions A, B, C, D and E
- $^{(e)}$   $k_{\rm eff}$  calculated by FORTRAN program
- $^{(f)}$   $k_{\text{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{\text{eff}}$  calculated by SCALE code
- $\mbox{\sc (h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$   $% k_{eff}Ca$
- (i) Alpha- $\alpha$  calculated by FORTRAN program
- $^{(i)}$  Alpha- $\alpha$  calculated by SCALE code



• The void reactivity coefficient values calculated by the FORTRAN program and by SCALE code show the same behavior, decreasing values as void moves away from the nuclear reactor center.

| $^{(i)}\alpha_{Ca}$ | -X <sup>_</sup> X <sup>_</sup> X- | 0.05379 | 0.04186  | 0.01042  | -0.02653 |
|---------------------|-----------------------------------|---------|----------|----------|----------|
| $^{(j)}\alpha_{Sc}$ | -x—x-x-                           | 0.00302 | -0.00951 | -0.01211 | -0.02163 |

- (a) Absorptions on regions A, B, C, D and E
- (b) Total absorption
- <sup>(c)</sup> Neutron leakage
- <sup>(d)</sup> k<sub>eff</sub> partial for regions A, B, C, D and E
- (e) k<sub>eff</sub> calculated by FORTRAN program
- $^{(\mathrm{f})}$   $k_{\mathrm{eff}}$  inserted in the FORTRAN program
- $^{(g)}$   $k_{\text{eff}}$  calculated by SCALE code
- ${}^{(h)}$   $\delta_{kS}$  (%) deviation between  $k_{eff}Sc$   $% k_{eff}Ca$  and  $k_{eff}Ca$
- <sup>(i)</sup> Alpha-α calculated by FORTRAN program
- $^{(i)}$  Alpha- $\alpha$  calculated by SCALE code







- The analytical method is simple in computation and permit to be made rapidly.
- Void insertion hardens the spectrum increasing the number of neutrons produced by fission per neutron absorbed ( $\eta$  factor). If the leakage does not compensate this effect we will have a positive void reactivity coefficient.
- This is well observed at reactor central region and the reactivity coefficient becomes positive.
- For region D, the leakage is dominant and the reactivity coefficient turns to negative.







- The model can predict the void reactivity coefficient tendency (positive or negative) and the multiplication factor deviation is less than 5% from real reactor core.
- Therefore, we conclude that this approach is a powerful tool for the core reactor design initial steps.



## References



- LIMA, Fabiano Petruceli Coelho. Análise global do coeficiente de reatividade de vazios para
   o reator de espectro rápido FBR-IME. Rio de Janeiro: Dissertação Instituto Militar de Engenharia, 2018.
- OLIVEIRA, Aline Alves. Reator rápido regenerador independente de urânio enriquecido.
  Rio de Janeiro: Dissertação Instituto Militar de Engenharia, 2014.
- SILVA, Paulo Henrique Pereira. Projeto conceitual mínimo de um reator de espectro rápido
   voltado para o parque nuclear brasileiro. Rio de Janeiro: Dissertação Instituto Militar de
   Engenharia, 2013.
- VELOSO, Marta Jan. Análise termofluida preliminar do reator de espectro rápido FBR IME. Rio de Janeiro: Dissertação Instituto Militar de Engenharia, 2018.
- DUDERSTADT, James J.. Nuclear Reactor Analysis. Michigan, EUA: Universidade de Michigan, 1976.







- FORTRAN Compaq Visual FORTRAN version 6.1 on CD ROM.
- MAPLE 13 MAPLE 13 Windows version.
- SCALE Standardized Computer Analyses for Licensing Evaluation, version 6.1.
- LAMARSCH, J. R.. Nuclear Reactor Theory. Larchmont, EUA: Universidade de Nova York, 1966.
- MEEM, J. L.. Two Group Reactor Theory. Virgínia, EUA: Universidade da Virgínia, 1964.
- DUDERSTADT, James J.. **Transport Theory**. Michigan, EUA: Universidade de Michigan, 1979.



## Thank you!!!

João Domingos Talon <u>lutalon@yahoo.com.br</u> (0xx)(21)99969-3167