

Clóves J. da Fonseca¹, Claudio L. de Oliveira¹, Rex N. Alves¹, Marcos Paulo C. de Medeiros¹, and Isadora C. Gonçalves¹

¹Instituto Militar de Engenharia Praça General Tibúrcio 80, Urca - Rio de Janeiro, Brasil

ANÁLISE DE SENSIBILIDADE DO FATOR DE MULTIPLICAÇÃO DE NÊUTRONS DEVIDO À UMA PERTURBAÇÃO SIMULADA EM UM PWR ABASTECIDO POR DIFERENTES CONCENTRAÇÕES DE THO2

Clóves J. da Fonseca¹, Claudio L. de Oliveira¹, Rex N. Alves¹, Marcos Paulo C. de Medeiros¹, and Isadora C. Gonçalves¹

¹Instituto Militar de Engenharia Praça General Tibúrcio 80, Urca - Rio de Janeiro, Brasil

Sumário

- i. Introdução
- ii. Objetivo
- iii. Metodologia
- iv. Resultados e análises
- v. Conclusões
- 2 0 1 9 2 0 1 9 1 0 0 0 0 INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE
- vi. Principais Referências

- Descoberta e domínio da fissão nuclear;
- Crescimento do número de reatores que utilizam urânio como combustível nuclear;
- Espectativa de crescimento da demanda por urânio devido aos novos reatores e pela demanda por energia limpa;

 Perspectiva de horizonte para as reservas de urânio levam à exploração de novos combustíveis nucleares.

- A solução mais direta é o tório:
 - ✓ Possui exploração facilitada;
 - ✓ Chega a dezenas de ppm mais abundante que o urânio na crosta terrestre;

- ✓ Apresenta em seu ciclo fatores complicadores à ploriferação;
- ✓ No Brasil, as reservas naturais de tório estão entre as maiores do mundo.

- Ilson Gradim (2015), verificou que o k_{inf} de reatores PWR é sensível à perturbação na temperatura do refrigerante.
- Isadora Gonçalves (2017), provou que a adição de ThO2 no combustível de um reator PWR leva à redução da produção dos venenos queimáveis, ¹³⁵*xe* and ¹⁴⁹*Sm*.

Caio Wichrowski (2017), verificou que a adição de ThO2 na mistura combustível de um reator PWR leva a um ciclo de queima mais longo, sendo limitada pelo k_{inf} e pelo enriquecimento.

SENSITIVITY ANALYSIS OF NEUTRON MULTIPLICATION FACTOR DUE TO THE PERTURBATION IN A PWR FILLED BY DIFERENTS CONCENTRATIONS OF ThO2

II. Objetivo

Analisar a sensibilidade do k_{inf} à perturbação na temperatura do refrigerante/moderador no núcleo de um reator nuclear PWR abastecido com UO2 + ThO2, utilizando o sistema de códigos nucleares SCALE 6.1.

III. Metodologia

- *i. Aproximação Teórica Simplificada a Teoria da Perturbação Liner*
 - Há casos em que os efeitos de uma perturbação no reator são inviáveis para serem calculados por meio de um novo cálculo multigrupo, por exemplo perturbação localizada cujos efeitos são pequenos o suficiente para serem perdidos por arredondamento;
 - Estes casos podem ser tratados pela teoria da perturbação, desde que o evento no reator, seja ele localizado ou uniforme, não distorça substancialmente o fluxo em sua vizinhança. Essa teoria é baseada em operadores adjuntos e auto-adjuntos.

III. Metodologia

- *ii.* <u>Setup</u> para a determinação dos coeficientes de sensibilidade
 - Foi utilizado o sistema de códigos nucleares SCALE 6.1;
 - ✓ Análises de sensibilidade pelo modulo de controle TSUNAMI Tools for Sensitivity and UNcertainty Methodology Implementation;
 - Escolhida a temperatura do refrigerante como fator extrínsico a ser variado nas simulações;

III. Metodologia

- *ii.* <u>Setup</u> para a determinação dos coeficientes de sensibilidade
 - Os percentuais relativos em peso de cada um dos isótopos da mistura combustível foram calculados por balanço de massa.

$$M_{tot} = x. M_{ThO_2} + (1 - x). M_{UO_2}$$

A densidade da mistura combustível foi calculada por uma média ponderada pelo percentual de ThO2 na mistura;

$$\rho \left[\frac{g}{cm^3} \right] = x \cdot \rho_{ThO_2} + (1-x) \cdot \rho_{UO_2}$$

A faixa de temperatura simulada foi de 280 K a 345 K, variando de 5 em 5 K e o percentual de ThO2 na mistura variando de 0% a 40% da mistura combustível.

Tabela 1: Composição da mistura combustivel em [%wt] para 2.5% de enriquecimento.

%ThO2 Comp.	0	5	10	15	20	25	30	35	40
Massa Total [g]	269,93	269,63	269,34	269,04	268,75	268,45	268,15	267,86	267,56
Densidade da Mistura [g/cc]	10,960	10,905	10,850	10,795	10,740	10,685	10,630	10,575	10,520
%U-235	2,176	2,070	1,963	1,856	1,749	1,641	1,534	1,426	1,317
% U-238	85,966	81,758	77,540	73,313	69,076	64,831	60,575	56,311	52,037
%O-16	11,819	11,832	11,845	11,858	11,871	11,885	11,898	11,911	11,924
%O-17	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038
%Th-232	0,000	4,302	8,614	12,935	17,265	21,606	25,955	30,315	34,684

Tabela 2: Composição da mistura combustivel em [%wt] para 3.2% de enriquecimento.

%ThO2 Comp.	0	5	10	15	20	25	30	35	40
Massa Total [g]	269,91	269,61	269,32	269,02	268,73	268,43	268,14	267,84	267,55
Densidade da Mistura [g/cc]	10,960	10,905	10,850	10,795	10,740	10,685	10,630	10,575	10,520
%U-235	2,786	2,650	2,513	2,376	2,239	2,101	1,963	1,825	1,686
%U-238	85,356	81,177	76,989	72,791	68,585	64,369	60,144	55,909	51,666
%O-16	11,820	11,833	11,846	11,859	11,872	11,885	11,898	11,911	11,925
%O-17	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038
%Th-232	0,000	4,302	8,614	12,936	17,266	21,607	25,957	30,316	34,685

Tabela 3: Sensibilidade da VC 2.5% enriq. com 0, 10, 25 e 40% wt de ThO₂

	Sensib. para	VC 2.5% En	ric. 0%wtThC	Sensib. para VC 2.5% Enric. 10%wtThO2				
Temp [K]	Comb.	Gap	Clad	Moderador	Comb.	Gap	Clad	Moderador
280	-1,1872E-02	-7,9071E-04	-1,3848E-02	4,6534E-02	-2,0413E-02	-8,1020E-04	-1,4367E-02	5,4178E-02
290	-1,1872E-02	-7,9071E-04	-1,3848E-02	4,6534E-02	-2,0413E-02	-8,1020E-04	-1,4367E-02	5,4178E-02
300	-1,1803E-02	-7,9022E-04	-1,3845E-02	4,6622E-02	-2,0330E-02	-8,0970E-04	-1,4364E-02	5,4255E-02
310	-1,1693E-02	-7,8952E-04	-1,3842E-02	4,6742E-02	-2,0201E-02	-8,0898E-04	-1,4361E-02	5,4361E-02
320	-1,1582E-02	-7,8887E-04	-1,3839E-02	4,6846E-02	-2,0071E-02	-8,0832E-04	-1,4358E-02	5,4450E-02
330	-1,1473E-02	-7,8827E-04	-1,3836E-02	4,6940E-02	-1,9942E-02	-8,0770E-04	-1,4356E-02	5,4529E-02
340	-1,1362E-02	-7,8770E-04	-1,3833E-02	4,7021E-02	-1,9814E-02	-8,0713E-04	-1,4353E-02	5,4597E-02
Sensib. para VC 2.5% Enric. 25% wtThO2					Sensib. p	ara VC 2.5%	% Enric. 40%	wtThO2
Temp [K]	Comb.	Gap	Clad	Moderador	Comb.	Gap	Clad	Moderador

Sensib. para VC 2.5% Enric. 25% wt1nO2					Sensib. para VC 2.5% Enric. 40% wt1nO2				
Гетр [K]	Comb.	Gap	Clad	Moderador	Comb.	Gap	Clad	Moderador	
280	-1,5830E-02	-8,1408E-04	-1,4711E-02	4,8583E-02	-3,9601E-03	-8,2652E-04	-1,5641E-02	3,6168E-02	
290	-1,5829E-02	-8,1441E-04	-1,4711E-02	4,8582E-02	-3,9601E-03	-8,2652E-04	-1,5641E-02	3,6168E-02	
300	-1,5724E-02	-8,1355E-04	-1,4709E-02	4,8641E-02	-3,8304E-03	-8,2594E-04	-1,5638E-02	3,6210E-02	
310	-1,5562E-02	-8,1278E-04	-1,4706E-02	4,8722E-02	-3,6311E-03	-8,2510E-04	-1,5635E-02	3,6262E-02	
320	-1,5401E-02	-8,1207E-04	-1,4704E-02	4,8788E-02	-3,4337E-03	-8,2433E-04	-1,5633E-02	3,6301E-02	
330	-1,5242E-02	-8,1142E-04	-1,4701E-02	4,8845E-02	-3,2427E-03	-8,2362E-04	-1,5631E-02	3,6330E-02	
340	-1,5086E-02	-8,1081E-04	-1,4699E-02	4,8891E-02	-3,0541E-03	-8,2296E-04	-1,5629E-02	3,6355E-02	

Tabela 4: Sensibilidade da VC 3.2% enriq. com 0, 10, 25 e 40% wt de ThO₂

	Sensib. para	VC 3.2% En	ric. 0%wtThO	Sensib. para VC 3.2% Enric. 10%wtThO2				
Temp [K]	Comb.	Gap	Clad	Moderador	Comb.	Gap	Clad	Moderador
280	-2,6016E-02	-7,1550E-04	-1,2603E-02	5,9651E-02	-3,5162E-02	-7,2103E-04	-1,3066E-02	6,7828E-02
290	-2,6015E-02	-7,1550E-04	-1,2603E-02	5,9651E-02	-3,5163E-02	-7,2103E-04	-1,3066E-02	6,7828E-02
300	-2,5969E-02	-7,1507E-04	-1,2600E-02	5,9752E-02	-3,5105E-02	-7,2059E-04	-1,3063E-02	6,7921E-02
310	-2,5896E-02	-7,1444E-04	-1,2596E-02	5,9895E-02	-3,5013E-02	-7,1993E-04	-1,3059E-02	6,8050E-02
320	-2,5820E-02	-7,1386E-04	-1,2592E-02	6,0023E-02	-3,4919E-02	-7,1934E-04	-1,3055E-02	6,8164E-02
330	-2,5743E-02	-7,1331E-04	-1,2588E-02	6,0136E-02	-3,4825E-02	-7,1877E-04	-1,3052E-02	6,8266E-02
340	-2,5665E-02	-7,1280E-04	-1,2585E-02	6,0239E-02	-3,4731E-02	-7,1824E-04	-1,3049E-02	6,8356E-02
	Sensib. para	VC 3.2% Enr	ic. 25%wtTh	02	Sensib. p	para VC 3.2%	<u>6 Enric. 40%</u>	wtThO2
Temp [K]	Comb.	Gap	Clad	Moderador	Comb.	Gap	Clad	Moderador
280	-3,1817E-02	-7,0330E-04	-1,3333E-02	6,3383E-02	-2,1155E-02	-6,9069E-04	-1,4196E-02	5,1946E-02
290	-3,1817E-02	-7,0330E-04	-1,3333E-02	6,3383E-02	-2,1156E-02	-6,9069E-04	-1,4196E-02	5,1946E-02
300	-3,1738E-02	-7,0283E-04	-1,3330E-02	6,3460E-02	-2,1051E-02	-6,9016E-04	-1,4194E-02	5,2004E-02
310	-3,1614E-02	-7,0213E-04	-1,3327E-02	6,3566E-02	-2,0889E-02	-6,8939E-04	-1,4190E-02	5,2082E-02
320	-3,1489E-02	-7,0149E-04	-1,3323E-02	6,3657E-02	-2,0729E-02	-6,8868E-04	-1,4187E-02	5,2147E-02
330	-3,1366E-02	-7,0089E-04	-1,3320E-02	6,3738E-02	-2,0571E-02	-6,8801E-04	-1,4184E-02	5,2203E-02
340	-3,1244E-02	-7,0033E-04	-1,3317E-02	6,3807E-02	-2,0414E-02	-6,8739E-04	-1,4182E-02	5,2248E-02

Figura 1: Comportamento da sensibilidade para a Mist. Comb. 2.5% Enriq. e 0%wtThO2. Fonte: Autor. Figura 2: Comportamento da sensibilidade para a Mist. Comb. 2.5% Enriq. e 25%wtThO2 Fonte: Autor. Fonte: Autor.

Figura 3: Comportamento da sensibilidade para a Mist. Comb. 3.2% Enriq. e 0%wtThO2. Figura 4: Comportamento da sensibilidade para a Mist. Comb. 3.2% Enriq. e 10%wtThO2. Fonte: Autor. Fonte: Autor.

Tabela 5:. Análise evolutiva do k_{inf} de acordo com o %wt de ThO₂ a 300K.

k_inf a 2.	5% de Enr.	k_inf a 3.2%	9/t Th O ?	
K_inf_ford	K_inf_adj	K_inf_ford	K_inf_adj	70WL 11102
1,368318	1,368867	1,428761	1,429292	0
1,322656	1,323197	1,386584	1,387106	5
1,285649	1,286180	1,353308	1,353820	10
1,249327	1,249849	1,321293	1,321792	15
1,213435	1,213941	1,288805	1,289291	20
1,175726	1,176219	1,254991	1,255462	25
1,136126	1,136604	1,219250	1,219707	30
1,094201	1,094665	1,181035	1,181477	35
1,049469	1,049918	1,139850	1,140279	40
		Forte Autor		

V. Conclusões

- Com as simulações, verificou-se que o k_{inf} é sensível à variações na temperatura do moderador/refrigerante de um reator nuclear PWR.
- A análise evolutiva do k_{inf} devido a inserção de ThO2, Tabela 5, na mistura combustível mostra a necessidade de aumento do enriquecimento à medida que se incrementa o percentual de ThO2 na mistura
 - combustível.
 - Ainda da Tabela 5 pode ser observada a sensibilidade devida à inserção de tório, para a temperatura de 300 K.

V. Conclusões

- O acréscimo de ThO2 na mistura combustível não tem correlação linear com o comportamento do coeficiente de sensibilidade.
- Propõe-se, para futuros trabalhos a análise de sensibilidade do k_{inf} de um reator nuclear PWR, como a inserção do venenos queimáveis e, em ciclo de queima com a mistura combustível contendo diferentes percentuais de ThO2.

VI. Principais Referências

2. IAEA. International Satatus and Prospects for Nuclear Power 2017. Bord of Governors General Conference, 2017. Avaible in: < https://wwwlegacy.iaea.org/About/Policy/GC/GC61/GC61InfDocuments/Engli sh/gc61inf-8_en.pdf> Access in: 24/01/208.

3. OECD. **Uranium 2018 Resources, Production and Demand**. Nuclear Energy Agency Organisation for Economic Co-Operation and Development. OECD iLibrary, 2018. Avaible in: < https://doi.org/10.1787/uranium-2018-en>. Access in: 11/02/2019.

5. NETO, G. Ilson. Análise das Simulações de Perturbações em Reatores Nucleares Usando o Código SCALE 6.1. Instituto Militar de Engenharia – IME- EB. Dissertação de Mestrado. Brasil, 2015.

6. GONÇALVES, C. Isadora. **Tório e suas aplicações nucleares**. Instituto Militar de Engenharia (IME)- EB. Dissertação de Mestrado. Brasil, 2017.

VI. Principais Referências

7. WICHROWSKI, C. Caio. **Análise do tório como combustível para reatores nucleares**. Instituto Militar de Engenharia (IME)- EB. Dissertação de Mestrado. Brasil, 2017.

10. IAEA, **Thorium fuel cycle** — **Potential Benefits and Challenges**. Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency. TECDOC-1450. ISBN 92– 0–103405–9. ISSN 1011–4289. Viena, Áustria. Maio, 2005. Avaible in: < https://wwwpub.iaea.org/MTCD/Publications/PDF/TE_1450_web.pdf>. Accesso in: 17/01/2019.

11. LAMARSH R. John. Introduction to Nuclear Reactor Theory. Addison-Wesley Publishing Company, Inc. Reading, Massachusetts. New York University, 1966.

12. DUDERSTADT J. James, HAMILTON J. Louis. **Nuclear Reator Analysis**. Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan. Jonh Wiley & Sons, Inc. New York, 1976.

<u>www.ime.eb.br</u> cjfonseca16@gmail.com

