

NUCLEAR ENERGY ROLE IN LATIN AMERICA AFTER THE NEW POLICIES SCENARIOS

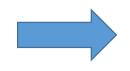
Flávia C. Kneipp, Fidéllis B. G. L. e Estanislau, Antonella L. Costa, Claubia Pereira and Carlos E. Velasquez

¹ Departamento de Engenharia Nuclear – UFMG

OUTLINE

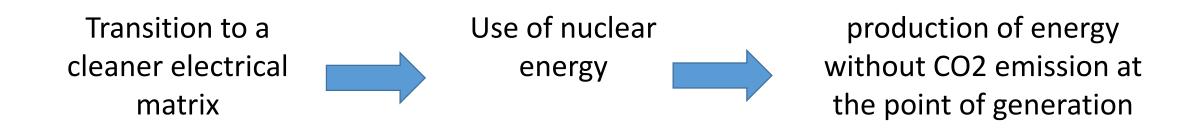
- Introduction
- Methodology
- Modelling
- Results
- References

INTRODUCTION



Electricity production in Latin America:

✓coal,


 \checkmark oil and

✓ natural gas

42% of genereted energy come from fossil fuels

Fossil fuels \rightarrow negatively impact the environment (GHG emissions)

INTRODUCTION

- Production of electricity in Latin America by nuclear power plant was accounted 2% of total electricity production (2017).
- Latin America countries with a nuclear program:

• Brazil	 Argentina 	 Mexico
-Angra 1	-Atucha 1	-Laguna Verde 1
-Angra 2	-Atucha 2	-Laguna Verde 2
-Angra 3 (under construction)	-Embalse -CAREM 25 (prototype)	

Goals of this study:

- \checkmark Analyze which reactors are the most adequate to meet the demand in the Latin American.
- ✓ Comparison in environmental terms (emission of greenhouse gases) from nuclear technology with other energy resources.
- ✓ Study the capability of supplying their own demand using domestic resources of uranium.

METHODOLOGY

- Software used for this study → MESSAGE (The Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) – IAEA (International Atomic Energy Agency) → Chose the most suitable reactors in each case to meet the future demand.
- Time horizon \rightarrow 2019 to 2050.
- Two scenarios \rightarrow high demand/low demand according to IAEA projections.
- Uranium resources \rightarrow evaluated domestic resources for each country and its consume by 2050.
- CO2 avoided by using nuclear resources compared to other fuels.

• Electricity projection in Latin American and the Caribbean according to IAEA (International Atomic Energy Agency) reports:

Electricity Production	2017	2030		2040		2050	
		Low	High	Low	High	Low	High
Total (TW.h)	1559	2171		2809		3576	
Nuclear (TW.h)	31	60	75	54	134	63	162
% of total	2.0	2.8	3.5	1.9	4.8	1.8	4.5

Note: *Open fuel cycle

Source: Adapted from IAEA (2016)

• Chosen countries in Latin American and Caribean for this study:

- Brazil

- Mexico

		Electricity Production by Nuclear (MW)							
			Low scenario)	High scenario				
а		Argentina	Brazil	Mexico	Argentina	Brazil	Mexico		
	2017	653	1696	1207	653	1696	1207		
	2030	1266	3290	2341	1579	4104	2921		
	2040	1139	2961	2107	2827	7345	5228		
	2050	1333	3464	2465	3420	8888	6326		

- The uranium resources were pooled into different grades according to the exploration classification of the uranium resource which are based on four prices categories:
- <USD 40/kgU,
- <USD80/kgU,
- <USD130/kgU and
- <USD 260/kgU

Argentina has three nuclear power plants (NPPs)

- ATUCHA 1 (PHWR) in operation
- ATUCHA 2 (PHWR) in operation
- EMBALSE (PHWR) in operation
- CAREM 25 (PWR) prototype (start working on 2020).

In Argentina's model was considered six reactors on the total:

- 03 PHWR (Atucha-1, Atucha-2 and Embalse),
- 02 PWR (CAREM-25 and CAREM-120)
- 01 ACR-700, (Advanced CANDU Reactor-700)

ACR -700 is a reactor developed by Atomic Energy of Canada Limited (AECL) with some differences compared to all CANDUs, as the low investment cost, high capacity factor, long lifetime and some changes in the safety components.

		Atucha-1	Atucha-2	Embalse	CAREM-25	ACR-700	CAREM-120
Nuclear capacity	MW	362	745	648	32	703	120
Load factor	n.a	0.75	0.88	0.85	0.8	0.95	0.90
Thermal efficiency	n.a	0.31	0.34	0.31	0.32	0.35	0.32
Discharge burnup	MWd/t HM	10700	10700	7200	18000	21000	31500
Residence Time	EFPD	456	456	335	840	456	1710
Enrichment of fresh fuel	n.a	0.00850	0.00714	0.00714	0.03100	0.021	0.031
Tails assay	n.a.	0.003	0	0	0.003	0.003	0.003
Minimum cooling time	year	5	5	5	5	5	5
Lifetime	year	30	30	30	40	30	40
Investment cost	US\$/kW(e)	1726.86	5895.6	3909.66	7267.5	3182.53	5814.00
Fixed O&M cost	US\$/kW.yr	87.72	87.72	87.72	51.00	128.88	51
Variable O&M cost	US\$/kW.yr	1.55	1.12	1.63	10.20	0	10.20
Conversion	US \$/kg HM	50.898	50.898	50.898	50.90	17.5	50.90
Enrichment	US \$/kg HM	112.2	112.2	112.2	112.2	44	112.2
Fuel fabrication cost	US \$/kgHM.yr	663.816	525.3	220.32	1020	183.06	1020
Cooling storage	US\$/kg HM/yr	5	5	5	5	5	5
Construction time	year	6	35	10	5	6	5

• Argentina

Brazil has the following reactors:

- Angra-1 (PWR) in operation
- Angra-2 (PWR) in operation
- Angra-3 (PWR) under construction (start working on 2026)

In Brazil's model was considered five reactors on the total:

- 03 PWR (Angra 1, Angra 2 and Angra 3)
- 01 EPR
- 01 LWR (China)

The EPR is a PWR reactor from generation III+ with a nuclear capacity of 1660 MW and it was developed by Framatome e Électricité de France

		Angra 1	Angra 2	Angra 3	EPR	LWR
Nuclear capacity	MW	626	1275	1245	1660	1000
Load factor	n.a	0.96	0.975	0.90	0.92	0.80
Thermal efficiency	n.a	0.342	0.358	0.358	0.36	0.33
Discharge burnup	MWd/t HM	55000	50000	50000	65000	45000
Residence Time	EFPD	1168	1168	1168	1168	1168
Enrichment of fresh fuel	n.a	0.04	0.04	0.05	0.05	0.04
Tails assay	n.a.	0.003	0.003	0.003	0.003	0.003
Minimum cooling time	year	5	5	5	5	5
Lifetime	year	40	40	40	60	40
Investment cost	US\$/kW(e)	2070.15	1993.86	5423.55	2508.00	3060.00
Fixed O&M cost	US\$/kW.yr	235.87	134.76	134.76	134.76	56.10
Variable O&M cost	US\$/kW.yr	56.16	25.73	25.73	25.73	10.20
Conversion	US \$/kg HM	7.05	7.05	7.05	7.05	8.16
Enrichment	US \$/kg HM	62.7	62.7	62.7	62.7	112.2
Fuel fabrication cost	US \$/kg HM.yr	287.38	287.38	287.38	287.38	280.50
Cooling storage	US\$/kg HM/yr	5	5	5	5	5
Construction time	year	10	19	13	8	5

Mexico has two nuclear power plants (NPPs)

- Laguna Verde 1 (BWR) in operation
- Laguna Verde 2 (BWR) in operation

In Mexico's model was considered four reactors on the total:

- 02 BWR (Laguna Verde 1 and Laguna Verde 02)
- 01 EPR
- 01 AP-1000

The AP-1000 reactor designed and sold by Westinghouse, which includes advanced passive safety systems and extensive plant simplifications to enhance the safety, construction, operation, and maintenance of the plant.

• Mexico

MODELLING

		Laguna Verde 1	Laguna Verde 2	AP-1000	EPR
Nuclear capacity	MW	780	780	1117	1660
Load factor	n.a	0.982	0.987	0.93	0,92
Thermal efficiency	n.a	0.34	0.34	0.33	0,36
Discharge burnup	MWd/t HM	10500	10500	60000	65000
Residence Time	EFPD	540	540	540	1168
Enrichment of fresh fuel	n.a	0.037	0.037	0.036	0,05
Tails assay	n.a.	0.003	0.003	0.003	0,003
Minimum cooling time	year	5	5	5	5
Lifetime	year	40	40	60	60
Investment cost	US\$/kW(e)	5948	5948	3172	2508,00
Fixed O&M cost	US\$/kW.yr	110.72	110.72	53.50	134,76
Variable O&M cost	US\$/kW.yr	19.54	19.54	10.60	25,73
Conversion	US \$/kg HM	51.53	51.53	10.80	7,05
Enrichment	US \$/kg HM	612.91	612.91	108.00	62,7
Fuel fabrication cost	US \$/kg HM.yr	325.44	325.44	324.00	287,38
Cooling storage	US\$/kg HM/yr	5	5	5	5
Construction time	year	13	17	5	8

RESULTS Argentina/Brazil/Mexico's models

Atucha-1 3600 3600 Atucha-1 (14, 3300 3000 2700 (0, 3300 3000 2700 2400 210 180 Atucha-2 Atucha-2 Embalse Embalse CAREM-25 CAREM-25 ACR-700 Production ACR-700 2400 CAREM-120 CAREM-120 2100 1800 Nuclear Electricity Nuclear Electricity 1500 1500 1200 -1200 900 900 600 -600 300 300 2030 2020 2035 2040 2045 2050 2025 2025 2030 2035 2040 2045 2050 2020 Time (years) Time (years)

RESULTS

Figure 1: Argentina's nuclear electricity production for the low (left) and high (right) scenarios.

-Atucha 1/Atucha 2/Embalse \rightarrow operate until the end of their lifetime -CAREM25/CAREM120 \rightarrow fixed operating at their maximum power. -ACR700 \rightarrow most suitable/ low LUAC&LUOM compared to CAREMs

Argentina

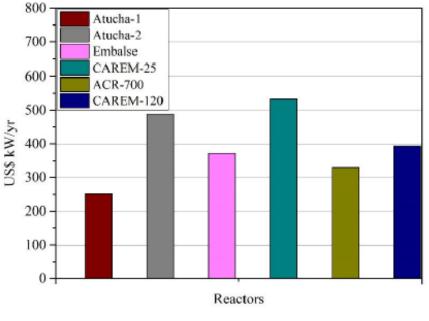
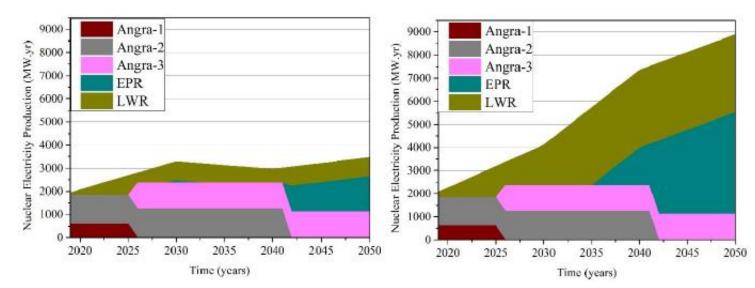
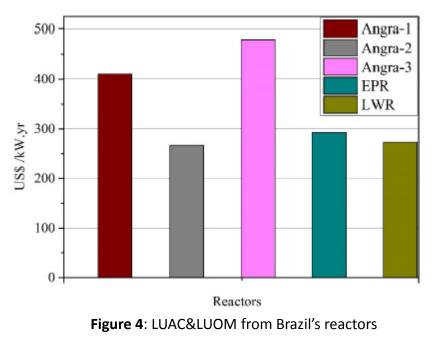
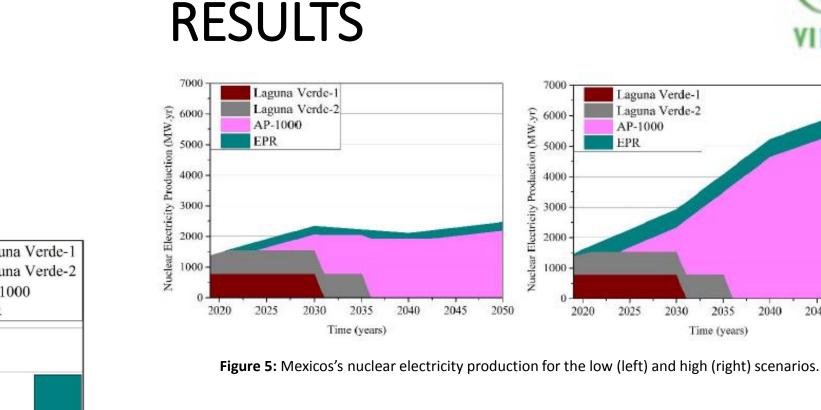



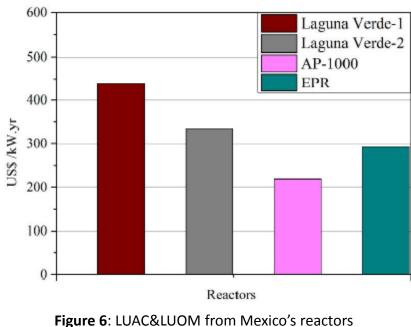
Figure 2: LUAC&LUOM from Argentina's reactors

LUAC – Levelized unit lifecycle amortization cost LUOM – Levelized unit lifecycle operation and maintenance cost



RESULTS


Figure 3: Brazil's nuclear electricity production for the low (left) and high (right) scenarios.


-Angra 1 and 2 → operate until 2025 and 2041, respectively.
-Angra 3 → start working on 2026 → fixed maximum output power
-LWR and EPR → most suitable/low LUAC&LUOM compared to Angra 3.

Brazil

Mexico

LUAC - Levelized unit lifecycle amortization cost LUOM - Levelized unit lifecycle operation and maintenance cost

- -Laguna Verde 1 and 2 \rightarrow operate until 2030 and 2035, respectively.
- -EPR \rightarrow fixed maximum output power
- -AP-1000 \rightarrow most suitable/low LUAC&LUOM compared to others

reactors.

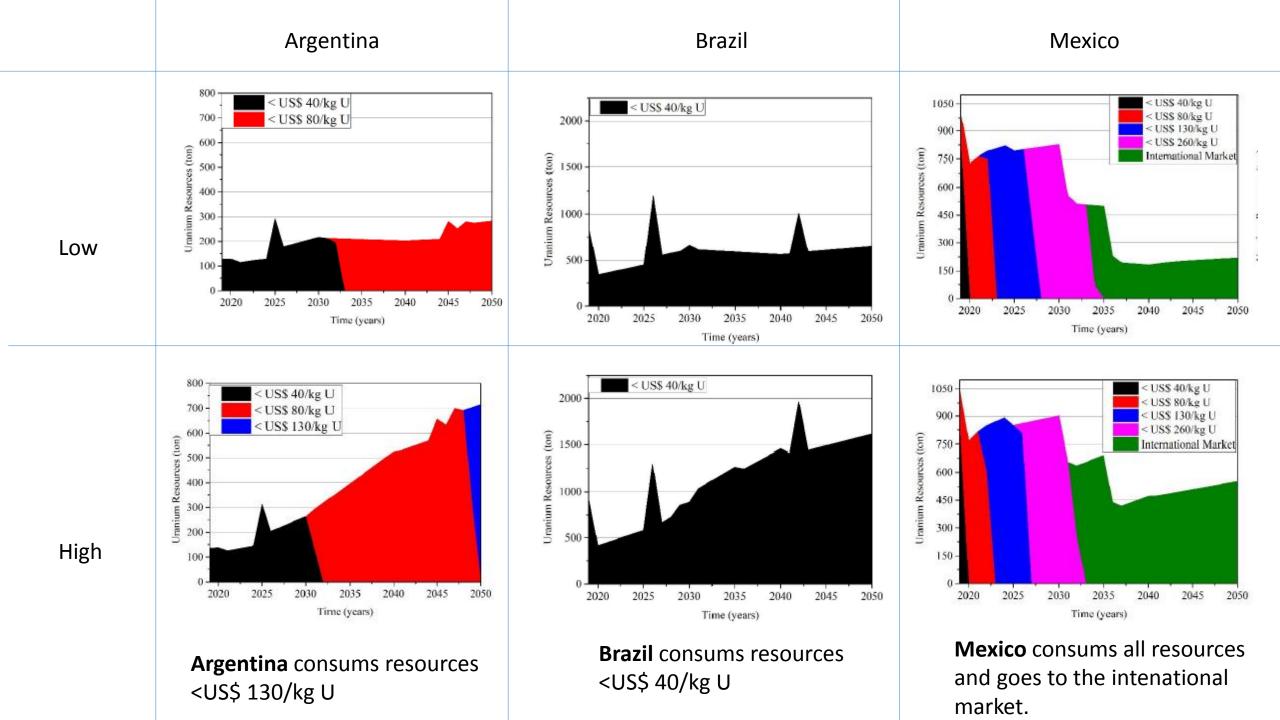
2040

2045

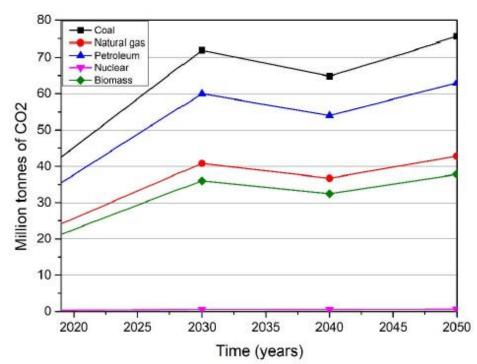
2050

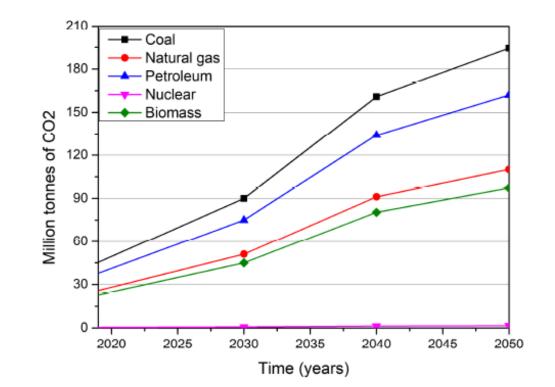
2030

2035


Time (years)

DOMESTIC RESOURCES OF URANIUM




CO2 AVOIDED BY NUCLEAR COMPARED TO OTHER FUELS IN LATIN AMERICA

RESULTS

CONCLUSIONS

- The reactors in operation will shut down in a short period of time.
- News reactors should be introduced in the electrical matrix in order to meet the future demand (high/low scenarios).

Reactors

- Argentina → CAREM25/CAREM120/ACR700
- Brazil → EPR/LWR(China)
- Mexico → EPR/AP1000

Domestic Resources

- Argentina/Brazil \rightarrow can supply their uranium demand by 2050 with their own domestic resources.
- Mexico → will not be able to attend its own demand of uranium and will run to the international resources after 2030.

CONCLUSIONS

CO2 Avoided

- The use of nuclear fuel avoids the release of great quantity of CO2 compared to other fuels.
- 2050 → the nuclear power plants will avoid the emission of 74.97 million tonnes of CO2 compared to the coal source and 192.78 million tonnes of CO2 in the low and high case, respectively.

Emission of CO2 by 2050 (million tonnes)								
	Coal Natural gas Petroleum Biomass Nuclear							
Low demand	75,6	42,84	63	37,8	0,63			
High demand	194,4	110,16	162	97,2	1,62			

• It shows to be a way to reduce emissions instead of using traditional fuels.

ACKNOWLEDGMENTS

REFERENCES

1. IAEA, "Energy, Electricity and Nuclear Power Estimates for the Period up to 2050," International Atomic Energy Agency, Vienna, Austria (2016).

2. The Parliament of the Commonwealth of Australia, "Australia's uranium — Greenhouse Friendly Fuel for an Energy Hungry World," Canberra, Australia (2006).

3. "The Paris Agreement," https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement (2018)

4. "Operational & Long-Term Shutdown Reactors," https://pris.iaea.org/PRIS/WorldStatistics/OperationalReactorsByCountry.aspx (2019)

5. International Atomic Energy Agency, "Modelling Nuclear Energy Systems with MESSAGE: A User's Guide, Nuclear Energy Series No. NG-T-5.2," IAEA, Vienna (2016).

6. IAEA, "Experience in Modelling Nuclear Energy Systems with MESSAGE: Country Case Studies," International Atomic Energy Agency, Vienna, Austria (2018).

7. "Atucha 1 Operating Licence Renewed," http://world-nuclear-news.org/Articles/Atucha-1-operating-licence-renewed (2018). INAC 2019, Santos, SP, Brazil.

8. "Argentine's Embalse Nuclear Plant Restarts Following Life Extension Work," https://www.neimagazine.com/news/newsargentines-embalse-nuclear-plant-restartsfollowing-life-extension-work-6932719 (2019).

9. AECL, "ACR-700 Technical Description," Atomic Energy of Canada Limited, Mississauga, Canada (2003).

10. Canadian Energy Research Institute, "Levelised Unit Electricity Cost Comparison of Alternate Technologies for Baseload Generation in Ontario," Canadian Energy Research Institute, Calgary, Canada (2004).

11. Idaho National Laboratory, "Advanced Fuel Cycle Cost Basis," Idaho National Laboratory, Idaho Falls, Idaho (2009).

12. R.C.Silva, I.M.Neto, S.S.Seifert, "Electricity Supply Security and the Future Role of Renewable Energy Sources in Brazil", *Elsevier*, Volume 59, pp.334 (2016).

13. Fidéllis B. G. L. e Estanislau, "Avaliação de Cenários de sistemas de energia Nuclear Utilizando Modelos Message," UFMG, Belo Horizonte, Brazil (2019).

REFERENCES

14. "Anúncio da Retomada das Obras de Angra 3 dá Novo Ânimo ao Setor de Energia Nuclear," http://abemi.org.br/anuncio-da-retomada-das-obras-de-angra-3-danovo-animoao- setor-de-energia-nuclear/ (2019).

15. "Fundamental Safety Overview," http://www.eprreactor.co.uk/ssmod/liblocal/docs/V3/Volume%201%20-%20Overview/1.A%20-%20EPR%20Design%20Description/1.A%20-%20EPR%20Description%20-%20v3.pdf (2019).

16. "Status report 81 - Advanced Passive PWR (AP 1000),"https://aris.iaea.org/pdf/ap1000.pdf(2014).

17. Sociedad Nuclear Mexicana, "Tercer Congreso Anual", Cuernavaca, Mexico (1992).

18. "Capital Cost Estimates for Utility Scale Electricity Generating Plants,"https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capcost_assumption.pdf(2016).

19. J.C.Palacios, G.Alonso, R.Ramirez, A.Gomez, J.OrtizJavier, L.C.Longoria, "Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario," United States (2004).

20. "Nuclear Power in Mexico," https://www.world-nuclear.org/information-library/countryprofiles/countries-g-n/mexico.aspx (2017).

21. "Plant Economics and Project Schedule," http://www.ftj.agh.edu.pl/~cetnar/ABWR/Chapter12.pdf (2000).

22. "AP1000 Nuclear Power Plant Design," http://www.westinghousenuclear.com/newplants/ap1000-pwr/overview (2019).

23. J. V. Algarin, T. R. Hawkins, J. Marriott, H. S. Matthews, and V. Khanna "Disaggregating the Power Generation Sector for Input-Output Life Cycle Assessment," *Journal of Industrial Ecology*, Vol. 19, pp. 666-675 (2015).

