PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods ar data

S-PRISM reacto Modeling and simulation

Results and discussion BOC burnup

Conclusions

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Ana Carolina A. A. Fernandes João M. L. Moreira Pedro C. R. Rossi

Engenharia de Energia e Programa de Pós-Graduação em Energia Universidade Federal do ABC

October 23, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

Contents

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods ai data

Modeling and simulation

Results and discussion BOC burnup

Conclusions

1 Introduction

Motivation

2 Methods and data

- S-PRISM reactor
- Modeling and simulation

3 Results and discussionBOC

burnup

Introduction

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction

Motivation

- Methods an data S-PRISM reacto Modeling and
- Results and discussion BOC burnup
- Conclusions

- >50% of reactors in the world are PWRs
- SNF from LWRs: 95% uranium, 1% TRUs and 4% FP
- TRUs: high radiotoxicity and long half-life
- fast reactors can recycle 96% of material in SNF

Motivation

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods ai data

Modeling and simulation

Results and discussion BOC burnup

Conclusions

Neutrons causing fission: 0.025 eV vs. 100 keV and above
PWR: capture / fast reactor: fission

Fast reactors vs. PWRs

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods ar data

Modeling and simulation

Results and discussion BOC burnup

Conclusions

- Excess of neutrons can be used for breeding or TRU burning
- Conversion Ratio:
 - PWR ≈ 0.6
 - Fast reactors from 0 to larger than 1

S-PRISM core

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

ntroduction Motivation

Methods ar data

S-PRISM reactor

Modeling and simulation

Results and discussion BOC

Conclusions

S-PRISM metal fuel composition by weight

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods a data

S-PRISM reacto Modeling and

Results and discussion BOC burnup

Conclusions

Material	Driver	Blanket
Natural uranium	69.5%	85.1%
Fissile plutonium	13.7%	3.3%
Non-fissile plutonium	3.4%	0.8%
Minor actinides	3.4%	0.8%
Zr	10.0%	10.0%

Driver fuel pin as modeled in MCNP6

Temperature coefficients of reactivity

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods ar data

S-PRISM reactor Modeling and simulation

Results and discussion

вос

burnup

Conclusions

Parameter	Driver pin	Blanket pin
α_{iso}	-1.127 ± 0.00017	-2.495 ± 0.067
$\alpha_{\it fuel}$	-1.475 ± 0.274	-1.620 ± 0.081
$\alpha_{\it coolant}$	0.355 ± 0.263	0.540 ± 0.485

イロト イボト イヨト イヨト

• $\alpha_c > 0$

• α_{fuel} negative (expansion, not Doppler)

$\alpha_{\textit{ISO}}$ as a function of neutron leakage

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introduction Motivation

Methods aı data

Modeling and simulation

Results and discussion

BOC

burnup

Conclusions

α_{ISO} becomes less negative with height increase
After 2.6 m, α_{ISO} is positive for the driver pin

Burnup

- Introduction Motivation
- Methods a data
- S-PRISM reactor Modeling and simulation
- Results and discussion BOC burnup
- Conclusions

 k_{∞} versus burnup

- Driver: fuel consumption / Blanket: conversion
- CR increases with lower enrichment

A D A A B A A B A A B A

 The simulations were made separately – core behavior will be certain when modeled as a whole

Conclusions

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introductior Motivation

Methods an data

S-PRISM reactor Modeling and simulation

Results and discussion BOC burnup

Conclusions

Temperature coefficients of reactivity:

- α_{ISO} and $\alpha_{fuel} < 0$
- $\bullet \ \alpha_{c} > 0$
- Core height is important due to neutron leakage
- Neutron leakage impacts α_{ISO}: increasing core height makes α_{ISO} less negative
 - $\alpha_{ISO} > 0$ for driver after 2.6 m
- Burnup shows different functions for driver and blanket

イロト 不得 トイヨト イヨト 二日

- Further analysis of the full core:
 - coupling effects
 - varying enrichment
 - safety parameters

PRELIMINARY STUDY OF FUEL PINS OF S-PRISM

Introductior Motivation

Methods ar data

Modeling and simulation

Results and discussion BOC

Conclusions

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで