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Introduction

 This paper proposes to discuss

the reactor’s kinetics, present

some kinetic parameters of

this core and provide some

initial insights of the dynamics

of this concept.

 The Institute for Advanced Studies (IEAv) undertook the Advanced Fast

Reactor Technology (TERRA) project;

 Source of electrical and thermal energy;

 Ensure human survival and operation of essential equipment;

 Designed to provide approximately 1,200 kWth for around 8 years;



Objectives

 Deduce an analytical model of the Point Reactor

Kinetics Model coupled with first order thermohydraulics

equations;

 Derive the kinetics parameters for TERRA’s core;

 Develop a computer program based on MATLAB

platform in order to execute the analytical model.



TERRA

 Fuel elements: 10% Pb

and 90% UN (enriched

up to 82.7% on 235U);

 37 heat pipes per

canister (total of 259);

 Rotating Control Drums:

composed of B4C

(absorber) and BeO
(reflector);

 Structural material:

Mo13Re.

Source: [4]



Model Equations



𝒅𝒏

𝒅𝒕
=

𝝆 𝒕 −𝜷

𝜦
𝒏 𝒕 +  𝒊−𝟏

𝟔 𝝀𝒊 𝑪𝒊 𝒕



𝒅𝑪𝒊

𝒅𝒕
=

𝜷𝒊

𝜦
𝒏 𝒕 − 𝝀𝒊𝑪𝒊 𝒕 , 𝒊 = 𝟏,… , 𝟔

𝝆 𝒕 = 𝒓𝒐𝒅 + 𝒄𝒌𝒇𝒅 𝒍𝒐𝒈
𝑻𝒇 𝒕

𝑻𝒇𝟎
+ 𝒄𝒌𝒇𝒆 𝑻𝒇 𝒕 − 𝑻𝒇𝟎

𝒎𝒇𝒄𝒑
𝒅𝑻𝒇 𝒕

𝒅𝒕
=  𝑸𝒄 −  𝑸𝒕+𝒓 where:

  𝑸𝒄 = 𝒌𝒄𝒑𝒏(𝒕

  𝑸𝒕+𝒓 = 𝒄𝒌𝒉𝒇(𝑻𝒇 − 𝑻𝒆

The Point Reactor Kinetics Model

Reactivity Model

Energy Balance



Control Method

𝑟𝑜𝑑 = 𝑝𝑟𝑜𝑑 + 𝑖𝑟𝑜𝑑

𝑝𝑟𝑜𝑑 = 𝑘𝑔𝑟(𝑝𝑜𝑤 − 𝑛 𝑡 )

𝑑

𝑑𝑡
(𝑖𝑟𝑜𝑑) =

𝑘𝑔𝑟(𝑝𝑜𝑤 − 𝑛 𝑡 )

𝑡𝑖𝑟

𝑝𝑟𝑜𝑑 -> signal proportional to power error;

𝑖𝑟𝑜𝑑 -> signal of the integral from power error;

𝑝𝑜𝑤 -> controller’s reference power value;

𝑘𝑔𝑟 -> controller’s proportional gain;

𝑡𝑖𝑟 -> integral controller’s time gain.

 Maintain core’s power levels in desired

interval;

 Guarantee safety and predictability;

 Proportional-Integral (PI) controller:



Parameters obtained

 𝑐𝑝 = 243.1362
𝐽

𝑘𝑔.𝐾
(base temperature of 1000 K [6]);

 𝑚𝑓 = 192.6 𝑘𝑔 [4];

 Considering 𝑘𝑐𝑝 = 1,200 𝑘𝑊 , 𝑛 𝑡 = 1 , 𝑇𝑒 = 3 𝐾 and 𝑇𝑓 = 1400 𝐾 [4] -> 𝑐𝑘ℎ𝑓 =

858.9835
𝑊

𝐾
;

Groups Λi [s-1] βi

1 1.249 10-2 5.282 10-4

2 3.182 10-2 2.749 10-3

3 1.094 10-1 2.665 10-3

4 3.170 10-1 7.594 10-3

5 1.354 100 2.206 10-3

6 8.636 100 7.798 10-4

λi and βi values for the six groups of 

delayed neutrons (ENDF/B-VII);

Coefficient Value Unit

𝑐𝑘𝑓𝑑 -1.200 10-6 Adimensional

𝑐𝑘𝑓𝑒 -7.600 10-6 °C-1

𝑟𝑜𝑑 0 Adimensional

 𝛬 = 8.2800𝑥10−8 𝑠.

Reactivity coefficients are generic

data for fast reactors [7].



Inserting the model

 All 7 Point Reactor Kinetics Model equations, the energy balance

and controller equations were written in the form:
𝑑𝑦(𝑡)

𝑑𝑡
= 𝐴𝑦 𝑡 + 𝑏

𝐴 =

𝜌 − 𝛽

𝛬
𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 0 0

𝛽1
𝛬

−𝜆1 0 0 0 0 0 0 0

𝛽2
𝛬

0 −𝜆2 0 0 0 0 0 0

𝛽3
𝛬

0 0 −𝜆3 0 0 0 0 0

𝛽4
𝛬

0 0 0 −𝜆4 0 0 0 0

𝛽5
𝛬

0 0 0 0 −𝜆5 0 0 0

𝛽6
𝛬

0 0 0 0 0 −𝜆6 0 0

𝑘𝑐𝑝

𝑐𝑝𝑚𝑓
0 0 0 0 0 0 −

𝑐𝑘ℎ𝑓

𝑐𝑝𝑚𝑓
0

−
𝑘𝑔𝑟

𝑡𝑖𝑟
0 0 0 0 0 0 0 0

𝑏 =

0
0
0
0
0
0
0

𝑐𝑘ℎ𝑓.𝑇𝑒

𝑐𝑝𝑚𝑓

𝑘𝑔𝑟. 𝑝𝑜𝑤

𝑡𝑖𝑟



Running the model

 The set of 9 equations was solved by “ode23s” function in
MATLAB;

 In order to test the kinetic micro core model, five types of
external reactivity insertions were established at 50
seconds:

1. A small impulse reactivity insertion of $0.01;

2. A larger impulse but still sub pronto critical reactivity
insertion of $0.40;

3. A pronto critical reactivity insertion of $1.00;

4. A super pronto critical reactivity insertion of $1.15;

5. An external reactivity ramp with behavior defined by
0.1𝛽𝑡

20
−

0.5𝛽

2
and ending at 70 seconds, remaining with its final value

($0.10) afterwards.



n(t) and Tf(t) behavior with a 

$0.01 impulse



n(t) and Tf(t) behavior with a 

$0.40 impulse



n(t) and Tf(t) behavior with a 

$1.00 impulse



n(t) and Tf(t) behavior with a 

$1.15 impulse



n(t) and Tf(t) behavior with a 
0.1𝛽𝑡

20
−

0.5𝛽

2

ramp ending at 70 seconds.



Results Analysis

 In all values of reactivity insertions, the core rapidly compensated
and returned to its original operation level;

 This is only possible due to the control system;

 The nuclear power and fuel temperature did not reach any
unreasonable values throughout the entire transitory process.

 When ramp insertion was applied, it rose up to 10% of the total
fraction of delayed neutrons, β;

 Response indicated that the microreactor core has enough feedback to
absorb this excess.

 Further investigations are certainly required:

 The feedback considers only two effects, the Doppler broadening and
fuel temperature variation effect;

 The cooling temperature effect has not been considered, as there is no
cooling per se, and heat removal is performed by heat pipes;

 The next steps planned in project TERRA are to further detail the heat
pipe effect as well as to improve the energy balance consideration.
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