

Nuclear Kinetic Model Development for the First Core of a Brazilian Space Microreactor

Nicolas Eilers Smith Santana and Lamartine Nogueira Frutuoso Guimarães

Santos, SP, Brazil, October 21-25, 2019.

Introduction

- The Institute for Advanced Studies (IEAv) undertook the Advanced Fast Reactor Technology (TERRA) project;
- Source of electrical and thermal energy;
- Ensure human survival and operation of essential equipment;
- Designed to provide approximately 1,200 kWth for around 8 years;

This paper proposes to discuss the reactor's kinetics, present some kinetic parameters of this core and provide some initial insights of the dynamics of this concept.

Objectives

- Deduce an analytical model of the Point Reactor Kinetics Model coupled with first order thermohydraulics equations;
- Derive the kinetics parameters for TERRA's core;
- Develop a computer program based on MATLAB platform in order to execute the analytical model.

TERRA

- Fuel elements: 10% Pb and 90% UN (enriched up to 82.7% on ²³⁵U);
- 37 heat pipes per canister (total of 259);
- Rotating Control Drums: composed of B₄C (absorber) and BeO (reflector);
- Structural material: Mo₁₃Re.

Source: [4]

Model Equations

The Point Reactor Kinetics Model

•
$$\frac{dn}{dt} = \left[\frac{\rho(t)-\beta}{\Lambda}\right]n(t) + \sum_{i=1}^{6}\lambda_i C_i(t)$$

$$\frac{dC_i}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t), i = 1, \dots, 6$$

Reactivity Model

$$\rho(t) = rod + c_{kfd} \log\left(\frac{T_f(t)}{T_{f0}}\right) + c_{kfe} \left(T_f(t) - T_{f0}\right)$$

Energy Balance
$$m_f c_p \frac{dT_f(t)}{dt} = \dot{Q}_c - \dot{Q}_{t+r}$$
 where:

$$\dot{Q}_c = k_{cp} n(t)$$

 $\overline{\dot{Q}}_{t+r} = c_{khf}(T_f - T_e)$

Control Method

- Maintain core's power levels in desired interval;
- Guarantee safety and predictability;
- Proportional-Integral (PI) controller:

$$rod = prod + irod$$

$$prod = kgr(pow - n(t))$$

$$\frac{d}{dt}(irod) = \frac{kgr(pow - n(t))}{tir}$$

prod -> signal proportional to power error; irod -> signal of the integral from power error; pow -> controller's reference power value; kgr -> controller's proportional gain; tir -> integral controller's time gain.

Parameters obtained

- $c_p = 243.1362 \left(\frac{J}{kg.K}\right)$ (base temperature of 1000 K [6]);
- ▶ $m_f = 192.6 \ kg$ [4];
- Considering $k_{cp} = 1,200 \ kW$, n(t) = 1, $T_e = 3 \ K$ and $T_f = 1400 \ K$ [4] -> $c_{khf} = 858.9835 \left(\frac{W}{K}\right)$;

Groups	∧ _i [s⁻¹]	β _i		
1	1.249 10-2	5.282 10-4		
2	3.182 10-2	2.749 10 ⁻³		
3	1.094 10-1	2.665 10 ⁻³		
4	3.170 10-1	7.594 10 ⁻³		
5	1.354 10 ⁰	2.206 10 ⁻³		
6	8.636 10 ⁰	7.798 10-4		

Reactivity coefficients are generic data for fast reactors [7].

► $\Lambda = 8.2800 x 10^{-8} s.$

 λ_i and β_i values for the six groups of delayed neutrons (ENDF/B-VII);

Coefficient	Value	Unit		
C _{kfd}	-1.200 10-6	Adimensional		
C _{kfe}	-7.600 10-6	°C-1		
rod	0	Adimensional		

Inserting the model

All 7 Point Reactor Kinetics Model equations, the energy balance and controller equations were written in the form: $\frac{dy(t)}{dt} = Ay(t) + \vec{b}$

	$\left[\frac{\rho-\beta}{\Lambda}\right]$	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	0	0			
	$\frac{\beta_1}{\Lambda}$	$-\lambda_1$	0	0	0	0	0	0	0	Г	0]	
	$\frac{\hat{\beta}_2}{\Lambda}$	0	$-\lambda_2$	0	0	0	0	0	0		0 0	
	$\frac{\beta_3}{\Lambda}$	0	0	$-\lambda_3$	0	0	0	0	0		0 0	
_ =	$\frac{\beta_4}{4}$	0	0	0	$-\lambda_4$	0	0	0	0	$\vec{b} =$	0	
	$\frac{\beta_5}{4}$	0	0	0	0	$-\lambda_5$	0	0	0		$0 \\ c_{khf} T_e$	
	$\frac{\beta_6}{4}$	0	0	0	0	0	$-\lambda_6$	0	0		$c_p m_f$	
	$\begin{array}{c} \Lambda \\ k_{cp} \end{array}$	0	0	0	0	0	0	C	0		tir	
	c _p m _f kgr							$c_p m_f$				
	$\left[-\frac{3}{tir}\right]$	0	0	0	0	0	0	0	0			

Running the model

- The set of 9 equations was solved by "ode23s" function in MATLAB;
- In order to test the kinetic micro core model, five types of external reactivity insertions were established at 50 seconds:
 - 1. A small impulse reactivity insertion of \$0.01;
 - 2. A larger impulse but still sub pronto critical reactivity insertion of \$0.40;
 - 3. A pronto critical reactivity insertion of \$1.00;
 - 4. A super pronto critical reactivity insertion of \$1.15;
 - 5. An external reactivity ramp with behavior defined by $\frac{0.1\beta t}{20} \frac{0.5\beta}{2}$ and ending at 70 seconds, remaining with its final value (\$0.10) afterwards.

n(t) and $T_f(t)$ behavior with a \$0.01 impulse

n(t) and $T_f(t)$ behavior with a \$0.40 impulse

n(t) and $T_f(t)$ behavior with a \$1.00 impulse

n(t) and $T_f(t)$ behavior with a \$1.15 impulse

n(t) and $T_f(t)$ behavior with a $\frac{0.1\beta t}{20} - \frac{0.5\beta}{2}$ ramp ending at 70 seconds.

Results Analysis

- In all values of reactivity insertions, the core rapidly compensated and returned to its original operation level;
 - This is only possible due to the control system;
 - The nuclear power and fuel temperature did not reach any unreasonable values throughout the entire transitory process.
- Number with the second second
 - Response indicated that the microreactor core has enough feedback to absorb this excess.
- Further investigations are certainly required:
 - The feedback considers only two effects, the Doppler broadening and fuel temperature variation effect;
 - The cooling temperature effect has not been considered, as there is no cooling per se, and heat removal is performed by heat pipes;
 - The next steps planned in project TERRA are to further detail the heat pipe effect as well as to improve the energy balance consideration.

References

- J. J. J. Duderstadt, L. J. Hamilton, *Nuclear Reactor Analysis*, John Wiley & Sons, Inc., New York, United States of America (1976).
- 2. D. L. Hetrick, Dynamics of Nuclear Reactors, The University of Chicago Press, Chicago, United States of America (1971).
- S. Ono, L. N. F. Guimarães, "Acoplamento dos Códigos ANISN-Br e CITATION para Cálculo de Criticalidade e Queima de Microrreator Rápido", Instituto de Estudos Avançados, São José dos Campos, Brazil (2013).
- 4. J. A. do Nascimento, S. Ono, L. N. F. Guimarães, F. B. Filho, R. Jordão, "Conc eptual Design and Neutronic Evaluation of a Fast Micro-Reactor for Utilizatio n in Space and Oceans", Instituto de Estudos Avançados, São José dos Ca mpos, Brazil (2013). Unpublished manuscript.
- 5. "Table of Simple Integral Neutron Cross Section Data From JEF-2.2, ENDF/B-VI, JENDL-3.2, BROND-2 and CENDL-2," Nuclear Energy Agency, Organizatio n for Economic Co-operation and Development, JEF Report 14, (1994).
- 6. Y. Takahashi, M. Murabayashi, Y. Akimoto, T. Mukaibo, "Uranium Mononitrid e: Heat capacity and thermal conductivity from 298 to 1000 °K", Journal of Nuclear Materials, pp. 303-308 (1971).
- 7. M. F. Bueno, "Desenvolvimento de Modelos de Núcleos de Reatores para o Conjunto SIMODIS", Universidade Braz Cubas, Mogi das Cruzes, Brazil (1999).