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Objective

Reactor refrigeration
Study the thermal-hydraulic behavior inside the pool
reactor by computational fluid dynamics considering
two situations:

Forced circulation. That is, when the external
coolant circuit is available.

Natural circulation. That is, when the external
coolant circuit shut down.
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Introduction

Introduction

TRIGA Research Reactor (Training Research Isotopes General Atomic)
TRIGA reactors were designed and built by General Atomic. They are open-pool
type reactors used for academic, research, material testing and isotope production
purposes.
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Introduction

TRIGA IPR-R1 nuclear research reactor
Drive and indicator 

assembly
Control rod

drive

Stainless 
Steel Tank.

Concrete

Rotary table
tube

Specimen 
entry tube

Aluminum
tank

Central
beam

The core of the reactor can house 91
rods, with 63 fuel elements, 23 false
graphite elements, a neutron source, a
central irradiation tube and 3 control
rods.
It is an upward flow reactor. That is, in
normal operation the coolant flows
from the bottom to the top of the core.
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Introduction

TRIGA IPR-R1 nuclear research reactor
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Methodology

Reactor features

Thermophysical properties
Heat capacity Cpa 4183 (J/kg.K)
Pressure Pa 1 (atm)
Dynamic viscosity µ 797.7×10−10 (N.s/m2)
Prandtl numberPr 5.42
Density of ref. rhoref 995 (kg/m3)
Temperature of ref. Tref 302 (K)
Thermal expansion β 0.305×10−3 (1/K)

Geometric and operation parameters
Thermal Power Pt 100 (kW)
Number of fuels Nc 63
Number graphite elements/others Ng 28
Diameter of the pool Dt 1900 (mm)
Total pool height Lt 6400 (mm)
Core diameter Dn 441 (mm)
Reflector diameter Dr 1090 (mm)
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Methodology

Power distribution

A total power of 100 kW was imposed, with a sinusoidal profile for axial
distribution and with a radial distribution obtained from literature simulation
and experimental data (Dalle, 2002).
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Methodology

Governing Equations
Simulations were performed using the compressible Boussinesq solver
(buoyantPimpleFoam) to estimate the density variations.

1. Continuity equation:
∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.1)

2. Momentum equation:

∂(ρuj)

∂t
+
∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂

∂xj
(τij + τt,ij) + ρgi (2.2)

3. Energy equation (written in terms of enthalpy):

∂(ρh)
∂t

+
∂

∂xj
(ρhuj)−

∂p
∂t

=
∂

∂xk

(
κeff

∂T
∂xk

)
(2.3)

κeff = αeffρCp is the effective conductivity, αeff is the effective thermal
diffusivity and Cp the specific heat.

4. To model the turbulence the standard κ− ε model was used
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Numerical Model

Numerical Model

Computational domain: extruded
meshes combined with
non-structured meshes were used.
Total mesh size: 6,978,842 cells.
Perforated support plates: They
were represented through porous
media regions using the
Darcy-Weisbach approach.
Heat transfer: The floor and lateral
walls were assumed as Adiabatic
while a constant convective
coefficient was used for modeling
the heat loss through the free surface.
Parallel computing: 20 nodes (80
processors) in CIMEC cluster (16 hr
of calculus for each 1 hr of
simulation).
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Results and analysis

Results - Forced circulation
Temperature: The
variations at the cross
sectional planes are less
than 2K and they
become lower at the top
side.
Velocity: Blue zones
correspond to
downward flow and red
zones to upward flow.
The minimum and
maximum values are
between -50 mm/s to 50
mm/s.At the upper half
side the flow ascends
close the wall and
descends through the
center.

a) b)
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Results and analysis

Forced circulation

Core: Along the
axial direction the
temperature
increases almost
linearly from 310K
to 330K.
Radial
temperature
distribution: It is
clearly a
consequence of the
pin power
distribution and the
location of the
control and
stainless steel rods.

x=0.1m x=0.2m

x=0.3m x=0.4m
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Results and analysis

Forced circulation

Core inlet: The highest velocities
are close to the periphery because of
the opening windows.
Core outlet: There is not a smooth
velocity profile. Maximums are in
the center with many peaks at the
high pin power locations.

Core inlet: The coolant flows mostly
by the opening windows with an
average velocity of 40 mm/s rising to
80 mm/s close to the rods. On the
other hand, the velocity at central
perforated plate remains less than 10
mm/s, but this is due to the porous
media representation.
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Results and analysis

Natural circulation

Evolution of pool heating

In normal operation (t=28000s) the hot plume is mixed with the cold inlet.

Once forced flow shut down the plume ascends up to the free surface, where only a
fraction of the heat is transferred to the environment.

the temperature increases progressively with heat rate of 5.2K per hour. After 960s (16
min) the temperature increases around 2K in the upper part of the pool.

t = 28000s t = 29204s t = 29554s t = 29904s t = 30254s t = 30604s
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Results and analysis

Forced vs Natural circulation

Evolution of velocity pattern

In contrast to the quite-steady and ordered plume, the downward flow is unstable. The
flow ascend in the central zone with high velocity and slowly descend close to the
laterals.

Flow transition from forced to natural circulation takes place quickly. In 500s the hot
plume due to the outlet core coolant reach a fluid flow stationary condition.

t = 28000s t = 29204s t = 29554s t = 29904s t = 30254s t = 30604s
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Results and analysis

Forced vs Natural circulation

Streamlines videos

Video streamlines Velocity

Video streamlines Temperature
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Results and analysis

forced vs natural circulation- inlet

Forced flow: The inlet flow
dominates and the the central plume
is moved toward the pool wall.

Natural circulation: The fluid
motion is mainly due to the
ascending central plume and the
helical descending flow.
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Results and analysis

Forced vs natural circulation- Velocity

Forced circulation: The inlet flow
dominates and the the central plume
is displaced toward the pool wall.

Natural circulation: The motion is
mainly due to the ascending central
plume.
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Results and analysis

Conclusions

In this work, the cooling capacity of the TRIGA-Mark I reactor was
studied by CFD. Two operation conditions at full power were evaluated:
forced circulation and natural circulation. The model allowed us to
analyze the transition from forced to natural flow.

Steady-state forced circulation conditions were achieved after simulate
around 7 hr of operation, getting a high mixing and quite complex flow
pattern.

On the other hand, once the forced circulation shut down, an organized
flow characterized by a central upwards plume was achieved. In this
situation an almost constant heating rate of 5.2K per hour was obtained.

4- The heat exchange at the free surface was less than 5 kW, which was
less than 5% of the total power in the core.
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Results and analysis

Thank you for your attention!
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