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Motivation Motivation

Motivation

In the nuclear industry the multiphase flows play a preponderant role. To understand
these flows is of great importance for the design, and particularly to ensure the safe

operation of the plants

Primary side

Feeder
coolant

Pressurizer

Pump

Secondary side

Steam generator (sec. side)

Primary side
Steam line

Collector
Turbine

Pressurizer

Pump

The computational simulation has been mostly from system codes, which are widely used for
the design and verification of nuclear power plants due to their ability to solve the overall
thermal-hydraulics, neutronic and plant control in a simplified way.
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Motivation General objective

Motivation and general objective

MOTIVATION

CFD models can be used in scale steam generators simulation, but not in real-scale
installations.
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Corzo,Godino,Nigro,Ramajo, Thermal hydraulics simulation of the RD-14M steam generator facility, Annals of Nuclear Energy, 2017

Godino,Corzo,Nigro,Ramajo, CFD simulation of the pre-heater of a nuclear facility steam generator using a thermal coupled model, Nuclear

Engineering and Design, 2018
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Motivation Objective

Objectives of the present work

Interfacial momentum exchange

Evaluate the effect of drag, lift, wall
lubrication, turbulent dispersion and virtual
mass forces on the different regime flows to
find a unique set of models able for the all of
them.

Turbulence

Assess the more widely used turbulence
models for industrial (real-scale) applications.

Blending

Evaluate the use of blending strategy for
representing the rheology changes.
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Motivation Objective

Governing equations

Continuity equation for α (ϕ1 : Continuous phase, ϕ2:
Disperse phase):

∂(αϕρϕ)

∂t
+∇ · (αϕρϕUϕ) = Γϕ

Conservation momentum equation:
∂(αϕρϕUϕ)

∂t
+∇·(αϕρϕUϕUϕ) = −∇·(αϕ(τϕ+Rϕ))

−αϕ∇p + αϕρϕg + Mϕ + (Γ2,1Uϕ − Γ1,2Uϕ)

Disperse flow
Flow analysis

Volume averaging

Model
abstraction

Energy conservation equation (in terms of total energy)

∂[αϕρϕ(hϕ + 1
2 UϕUϕ)]

∂t
+∇ · [αϕρϕUϕ(hϕ +

1
2

UϕUϕ)]− αϕ

(
∂p
∂t

+ Uϕ · ∇p
)

=

−∇ · (αϕqϕ) + αϕ∇ · (Uϕτϕ) + (Γϕ,ϕ′hϕ − Γϕ′,ϕhϕ) + αϕUϕMϕ

In the momentum equations the coupling between the two phases is through the interfacial
force terms Mϕ and the moment exchanged during the mass transfer (evaporation).
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Motivation Blending

Blending methodology

Blending methodology is used to locally and run-time switch between three flow regime:

1-Bubbly flow (αs < 0,3): Steam bubbles
moves in a slow liquid continuous flow (riser).
Due to the lower bubble density, the higher
bubble deformation, and the higher liquid
viscosity, the drag, lift, wall lubrication,
turbulent dispersion and virtual mass forces are
really significant.

2-Segregated flow (0,3 < αs < 0,7): Is a
transition regime.

ffs = f1d - f2d

αG

f2d= 1- f1d

f1d

1
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Keff = K1d.f1d + K2d.f2d + Ksf.fsf  

K1d.f1d

1-Bubbly flow 3-Drop flow2-Segregated flow

K2d.f2dKeff  

f

3-Drop flow (αs > 0,7): Liquid drops are dragged by a fast steam flow (separators and dryers).
Due to the larger liquid density and the lower steam viscosity, the lift, wall lubrication,
turbulent dispersion and virtual mass forces of minor impact. Drag and inertial forces compete.
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Motivation Blending

Blending

Blending

Fluid: water and air

Bubble/drop size: 3 mm

Air inlet velocity: 0.4 m/s

Interfacial models: Drag
(Grace/Tomiyama/Marschall),
lift(Tomiyama),WLF(Frank),
TDF (Burn),VMF (Constant)

Air/liquid vertical column

Video blending
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Motivation Blending

Interfacial moment exchange

Interfacial forces:

M1,2 = −M2,1 = MD+ML+MWL+MVM +MTD

1 Drag force

FD = −3
4

CD
α2ρ1

d2
|UR|UR

2 Lift force
FL = CLα2ρ1UR ×∇× UR

3 Wall lubrication force
FWL = −CWLα2ρ1|UR|2n

4 Turbulent dispersion force
FTD = −CTDρ1k1∇α2

5 Virtual mass force

FVM = CVMα2ρ1

(
DU2

dt
− DU1

dt

)

Bubble concentration 

Drag force

Lift
force

Turbulent
dispersion
force

Rotation

Bubbles

Wall
lubrication
force

Liquid

Virtual
Mass
force

Relative
acceleration

UR

UR

UR

Drag models:
Grace for bubbles in water
Tomiyama for drops in air
Marschall for continuous-continuous
fluid
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Motivation Blending

Interfacial moment exchange

Interfacial forces:

M1,2 = −M2,1 = MD+ML+MWL+MVM +MTD

1 Drag force

FD = −3
4

CD
α2ρ1

d2
|UR|UR

2 Lift force
FL = CLα2ρ1UR ×∇× UR

3 Wall lubrication force
FWL = −CWLα2ρ1|UR|2n

4 Turbulent dispersion force
FTD = −CTDρ1k1∇α2

5 Virtual mass force
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(
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dt
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Lift models: Constant, Moraga,
Tomiyama
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Motivation Blending

Interfacial moment exchange

Interfacial forces:

M1,2 = −M2,1 = MD+ML+MWL+MVM +MTD

1 Drag force

FD = −3
4

CD
α2ρ1

d2
|UR|UR

2 Lift force
FL = CLα2ρ1UR ×∇× UR

3 Wall lubrication force
FWL = −CWLα2ρ1|UR|2n

4 Turbulent dispersion force
FTD = −CTDρ1k1∇α2

5 Virtual mass force

FVM = CVMα2ρ1

(
DU2

dt
− DU1

dt

)
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Wall lubrication models: Antal, Frank
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Motivation Blending

Interfacial moment exchange

Interfacial forces:

M1,2 = −M2,1 = MD+ML+MWL+MVM +MTD

1 Drag force

FD = −3
4

CD
α2ρ1

d2
|UR|UR

2 Lift force
FL = CLα2ρ1UR ×∇× UR

3 Wall lubrication force
FWL = −CWLα2ρ1|UR|2n

4 Turbulent dispersion force
FTD = −CTDρ1k1∇α2

5 Virtual mass force

FVM = CVMα2ρ1

(
DU2

dt
− DU1

dt

)
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force

Rotation
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Relative
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Turbulent dispersion models: Lopez de
Bertodano, Gosman, Burn
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Motivation Blending

Interfacial moment exchange

Interfacial forces:

M1,2 = −M2,1 = MD+ML+MWL+MVM +MTD

1 Drag force

FD = −3
4

CD
α2ρ1

d2
|UR|UR

2 Lift force
FL = CLα2ρ1UR ×∇× UR

3 Wall lubrication force
FWL = −CWLα2ρ1|UR|2n

4 Turbulent dispersion force
FTD = −CTDρ1k1∇α2

5 Virtual mass force
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(
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dt
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Virtual mass models: Constant, Lamb
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Motivation Multiphase benchmarks

Multiphase benchmarks

Four two-phase benchmarks were considered:

Case 1. Bubble plume: Ascending bubble plume in a vertical rectangular
column of water

Case 2. TOPFlOW: Gas-Liquid Flow around an Obstacle in a Vertical Pipe (TOPFLOW
experiments)

Case 3. Horizontal gas/liquid flow: Counter-current flow of water and air
(HAWAC experiments)

Case 4. Horizontal fluid/fluid flow: Co-current flow
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Results Multiphase benchmarks

Case 1. Bubble plume

Case 1. Bubble plume
The test was carried out and simulated
by Krepper et al. in 2007[1].
Air is injected from a sparger at the
bottom side of a rectangular water
column of 100 mm wide, 20 mm depth
and 1448 mm height.
Small bubbles (1 mm < φb < 5 mm)
ascend swelling the column.
The void fraction distribution and the
average void fraction for several gas
velocities are measured.
In this test the effect of all the
interfacial forces becomes significant.
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[1] Krepper, Vanga, Zaruba, Prasser, and Lopez de Bertodano. Experimental and numerical studies of void fraction distribution in rectangular
bubble columns. Nuclear eng. and design, 237(4), 2007.
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Results Multiphase benchmarks

Case 1. Bubble plume

Mesh convergence (Vg = 10 mm/s)
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Results Multiphase benchmarks

Case 1. Bubble plume (Cont.)

Swelling effect
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void fraction. The error increased

with Vg up to 26 %.
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Results Multiphase benchmarks

Case 2. Flow around an obstacle

Case 2. TOPFlOW:
The test was carried out and simulated by
Prasser et al. in 2008[2].
Air is injected from a perforated injector
tubes introducing small bubbles (2 mm < φb

< 12 mm) at the bottom side of a circular
water column of 195 mm of diameter and 9
m of height.
A constant water flow is circulated and the
air-water mixture pass through an obstacle.
The void fraction and the phases velocities
patterns for several gas/liquid velocities are
measured downstream of the obstacle.
Air accumulation over the obstacle is
measured.

Baffle

Inlet
air/steam

Inlet
water

[2] Prasser, Beyer, Frank, Al Issa, Carl, Pietruske, and Schütz. Gas–liquid flow around an obstacle in a vertical pipe. Nuclear eng. and
design, 238(7), 2008.
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Results Multiphase benchmarks

Case 2. Flow around an obstacle

Void fraction - Water Velocity
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Comparison between Experiments, OpenFOAM and Prasser[2].
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Results Multiphase benchmarks

Case 2. Flow around an obstacle (Cont)

Normalized void fraction and axial water velocity axial in symmetry planes. Upstream of
the obstacle (z = -20 and -520 mm)
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Results Multiphase benchmarks

Case 2. Flow around an obstacle (Cont)

Normalized void fraction and axial water velocity axial in symmetry planes.Downstream
of the obstacle (z = 80 and 20 mm)
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Results Multiphase benchmarks

Case 3. Counter-current flow

Case 3. Horizontal
counter-current gas/liquid flow:
The test was performed by
Stäbler[3], and numerically
reproduced by Wintterle et al.[4],
Porombka and Höhne [5]. This
consists on a rectangular channel
of 583 mm in wide, 110 mm in
depth, and 138 mm in height. The
water enters at 0.7 m/s from the left
side through a 9 mm height section
whereas the air flows at 4.44 m/s in
counter-current direction.
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[3] Stäbler. Experimentelle untersuchung und physikalische beschreibung der schichtenströmung in horizontalen kanälen. 2007.
[4] Wintterle, Laurien, Stäbler, Meyer, and Schulenberg. Experimental and numerical investigation of counter-current stratified flows in
horizontal channels. Nuclear eng. and design, 238, 2008.
[5] Porombka and Höhne. Drag and turbulence modelling for free surface flows within the two-fluid euler–euler framework. Chemical
Engineering Science, 134, 2015.
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Results Multiphase benchmarks

Case 3. Counter-current flow

Air velocity - Water velocity
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Results Multiphase benchmarks

Case 4. Co-current flow

Case 4. Horizontal co-current
flow liquid/liquid: The test
consists of a 2D rectangular
channel of 40 mm in wide and 20
mm in height, where two miscible
fluids with the same density of 1
kg/m (non-buoyant) and viscosities
of 1,85 × 10−5 Pa.s and 5 × 10−5

flows co-current driven by a
imposed pressure difference of 2.1
mPa. This is an academic test with
analytic and numeric solutions
proposed by Marschall[6].

L

d
H

x
y

fluid 1

fluid 2

[6] Marschall. H. Marschall. Towards the numerical simulation of multi-scale two-phase flows. PhD thesis, Technische Universität München,
2011.
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Results Multiphase benchmarks

Case 4. Co-current flow

Fluid velocities

A very good agreement
was found. Only drag is
significant for this test.

The segregated model is
the only one able to

correctly capture the
interfacial efforts

Comparison between OpenFOAM and analytic results [6].
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Results Multiphase benchmarks

Conclusions

1- The two-fluid model was assessed against four benchmarks
representing flow regime commonly found in steam generators and many
industrial processes.

2- The four cases were solved with the same computational model and
compared with experimental and analytic results founding good
agreement for all cases.

3- The linear blending model was suitable for switching between
disperse and segregated flow

4- The segregated model proposed by Marschall for simple co-current
flows was also suitable for capturing the interfacial drag in more
complex counter-current flows.

5- The κ - ω SST model showed to be a little better than the k-epsilon
realizable and the κ− ω-Sato models.
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Results Multiphase benchmarks
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