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Introduction

Introduction

Sensible engineering fields, like the nuclear safety assessment, involve the analysis of
large installations composed of very different scale components, where single and
two-phase flows take place. Thus, the verification of plant accidents has forced to the
community to use System Codes like RELAP and ATHLET, which are based on the

domain reduction and the use of empirical correlations.
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Mathematical model

Governing Equations

1. Momentum equation:

a(pU)

T +V-(pU®U) = —-Vp+V -7+pg

2. Volume and temporal discretization:

U= U0+At [(Pinl - pout)/(pL) + g(hinl - hout)/L]

1L, 1,
(ke ) s o)

3. Algebraic solution:

U™ = U +A1 [(Phe;1 — Phe.2)/ (L) + &(hin — hou) /L]

+AIf (A, (U)?)/L + (AHg) /L l_ "D

where H(Q) = ClQ2 + CZQ + C3 comcm
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Mathematical model

Government Equations:

In order to solve the heat transfer 0D model, the Effectiveness-NTU Method
was implemented. J

Equations
Q
. Qmaz
Q = C{: (Tc,om - T(:,m) = Ch (Th,,m - Th,auf,)
ATpar = Thin — Tein
Qmaz = Cmm (Th,in - Tc,in)

Cmin

€=

B

Shell Tubes

21y 1
- g lteap[-NTUVI+E]
€=2 {1 tetvlte 1—e.Tp[-_NTU\/1+c2]

Th,‘rmt = Th,,m -
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Mathematical model

Governing Equations: OD Thermal model

For the BC specification in OpenFOAM, the user data file input contains the

following parameters for the velocity and temperature fields at the
INLET/OUTLET patches.

INL /OUT

{
couplingPipeFixedValue; INL/OUT
yes: Is the master patch?
TOUT” Nei. patch [] type heatPipePFixedValue
0.0; Master height [m neiPatchName OUT; Nei. patch
2.978; Neighbour height [m] A Heat transfer area [m2
37.0; Pipe length [m] mS Secondary mass flow rate [kg/s
le //Pipe roughness [m] Tis Secondary inlet temperature [K
2001.2; Eff. loss coeff. [] Ugl Global heat transfer coef W/m2K
0.1698; Hydr. diameter [m] rho Mean density [kg/m3

pmpCl 0.01; Pump coefficient [] Cp Mean heat capacity [J/kg/K

pmpC2 0.0; //Pump coefficient [] }

pmpC3 13.0; Pump coefficient |[]

ﬂ CONICET
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Numerical Model

Numerical Model

m Computational domain:
= 800, 000 cells.

m Domain simplifications: Only
the inlet/outlet pipes and the
reflector were considered.

m Solver: Compressible
(buoyantPimpleFoam).

m Turbulence model: Realizable
k—e.

m Core pressure drop: Porous
media was chosen. A
Forchheimer coefficient F = 60
was adopted.

m Core power: It was imposed as a
volumetric power source.
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Numerical Model

Results - Steady-state condition

The steady state conditions were assessed
for two power conditions:

m Case 1: 100kW

m Case 2: 265kW (Mesquita et al.,2011).

Hydraulic system

Parameter Value Unit
Total lenght 370 ]
Gior 20012 H
Pump coef. -0.01, 0.0, 13.0  [ms?/L? [ms/L] [m]
Roughness 1% 107 ]
Heat exchanger
Parameter Value Unit
Area 470 [m?]
Ext. flow rate L1 [kg/s]
Ext. flow inlet ttemp. 2998 [K]
Ugl 8363 [W/m2K]

The simulation was carried out for 17h,
using parallel computing.

For each hour of problem simulation,
3,42h of CPU time was required.
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Results and analy

Steady-state condition
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Results and analysis

Results - Steady-state condition

% External circuit
5 Parameter Case 1 Case 2 Unit
g |
& 31513 : : : ! ‘ ; - Result  Result  Experiment  Unit
7000071000 72000 73000 74000 73000 76000 Power 100 265 265 [kW]
Time [s]
i 7.95 7.94 78 [Kg/s|
5 Tyt 305.85 31515 - K]
&
g Tit 302,54 306.46 - K]
= Tout 305.73  314.26 - K]
Core
- i 34 47 142 [Ke/s|
g 2654 Teare 309.46 3217 - K]
= s 1 >
5 2009 Tint 305.72 3145 - [K]
=B ‘ ‘ | Tout 31272 3279 . (K]
250 : ! ! ! ! i
70000 71000 72000 73000 74000 75000 76000 AT 7.0 13.4 14.3 K]
Time [s]
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Results and analysis

Loss of forced convection event

m Event: A primary pump shut-down condition
was simulated.

m Consequences: The loss of forced convection
leads to a progressive coolant heating because
the free-surface heat transfer is not enough.

m Core power: A constant core power of
265kW was assumed.

m The simulation was carried out for 5000s. }. 1
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Results and anal

Loss of forced convection event
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Results and analysis

Loss of coolant accident

m Event: A downstream 2A-LOCA pump
condition was simulated.

m Solver: The compressible Volume of Fluid
(VOF) solver (compressiblelnterFoam) was
used to track the free surface motion.

m Core power: A constant core power of
100kW was assumed.

m Consequences: A quick increase of the flow
rate in the pump is caused by the loss of 3 ' 4
downstream circuit.
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Results and analysis

Loss of coolant accident
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Conclusions

Conclusions

m The work address with the implementation of a new dynamic boundary
condition in OpenFOAM 5.0, for coupling 0D and 3D CFD domains.

m The model was used to simulate operational and accidental conditions in
the TRIGA MARK I reactor with different core powers.

m The TRIGA simulation results were in good agreement respect the
design and experimental data.

m Loss of forced convection event: The pump shutdown quickly reduced
the flow in the external circuit. The natural convection governs the flow
circulation. In consequence, the reactor heats with a constant rate.

m Loss of coolant event: A quick increase of the flow rate in the pump is
leaded by the loss of downstream circuit. The core is uncovered after
500s. Even though core temperature rising, saturation condition is not
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Thank for your attention! )
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