Numerical simulation of large hydraulic systems using a multi-domain approach

Santiago F. Corzoa, Johan A. Sarache Piñaa, Dario Godinoa, Antonella L. Costab, Claubia Pereirab, Damian E. Ramajoa

a Centro de Investigacion de Metodos Computacionales
CIMEC-UNL/CONICET, Santa Fé, Argentina

b Departamento de Engenharia Nuclear
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

23/10/2019
Sensible engineering fields, like the nuclear safety assessment, involve the analysis of large installations composed of very different scale components, where single and two-phase flows take place. Thus, the verification of plant accidents has forced to the community to use System Codes like RELAP and ATHLET, which are based on the domain reduction and the use of empirical correlations.
Mathematical model

Governing Equations

1. Momentum equation:

\[
\frac{\partial (\rho U)}{\partial t} + \nabla \cdot (\rho U \otimes U) = -\nabla p + \nabla \cdot \tau + \rho g
\]

2. Volume and temporal discretization:

\[
U = U_0 + \Delta t \left[\frac{(p_{inl} - p_{out})}{(\rho L)} + g(h_{inl} - h_{out})/L \right]
\]

\[
+ \Delta t \left[\left(\frac{1}{2} \frac{L}{D_h} U^2 + \frac{1}{2} KU^2 \right) / L + \Delta P_{ext} \right]
\]

3. Algebraic solution:

\[
U^n = U^{n-1} + \Delta t \left[\frac{(p^n_{bc,1} - p^n_{bc,2})}{(\rho L)} + g(h_{inl} - h_{out})/L \right]
\]

\[
+ \Delta t f(\lambda, (U^n)^2)/L + (\Delta t Hg)/L
\]

where \(H(Q) = C_1 Q^2 + C_2 Q + C_3 \)
In order to solve the heat transfer 0D model, the Effectiveness-NTU Method was implemented.

\[
\epsilon = \frac{Q}{Q_{max}}
\]
\[
\dot{Q} = C_c (T_{c,out} - T_{c,in}) = C_h (T_{h,in} - T_{h,out})
\]
\[
\Delta T_{max} = T_{h,in} - T_{c,in}
\]
\[
\dot{Q}_{max} = C_{min} (T_{h,in} - T_{c,in})
\]
\[
c = \frac{C_{max}}{C_{min}} A_s
\]
\[
NTU = \frac{\dot{Q}}{C_{min}}
\]
\[
\epsilon = 2 \left\{ 1 + c + \sqrt{1 + c^2} \frac{1+exp\left[-NTU\sqrt{1+c^2}\right]}{1-exp\left[-NTU\sqrt{1+c^2}\right]} \right\}^{-1}
\]
\[
T_{h,out} = T_{h,in} - \frac{\dot{Q}}{m_h C_{ph}}
\]
Governing Equations: 0D Thermal model

For the BC specification in OpenFOAM, the user data file input contains the following parameters for the velocity and temperature fields at the INLET/OUTLET patches.

```
INL/OUT
{
    type couplingPipeFixedValue;
    master yes; // Is the master patch?
    neiPatchName "OUT"; // Nei. patch []
    hStart 0.0; // Master height [m]
    hEnd 2.978; // Neighbour height [m]
    Lline 37.0; // Pipe length [m]
    rug 1e−5; // Pipe roughness [m]
    kEff 2001.2; // Eff. loss coeff. []
    Dh 0.1698; // Hydr. diameter [m]
    pmpC1 −0.01; // Pump coefficient []
    pmpC2 0.0; // Pump coefficient []
    pmpC3 13.0; // Pump coefficient []
}
```

```
INL/OUT
{
    type heatPipeFixedValue;
    neiPatchName OUT; // Nei. patch []
    A 47; // Heat transfer area [m²]
    m8 11.1; // Secondary mass flow rate [kg/s]
    TiS 299.85; // Secondary inlet temperature [K]
    Ugl 836.8; // Global heat transfer coef. [W/m²K]
    rho 1000; // Mean density [kg/m³]
    Cp 4174.4; // Mean heat capacity [J/kg/K]
}
```
Numerical Model

- Computational domain: \(\approx 800,000 \) cells.
- Domain simplifications: Only the inlet/outlet pipes and the reflector were considered.
- Solver: Compressible (buoyantPimpleFoam).
- Turbulence model: Realizable \(k - \epsilon \).
- Core pressure drop: Porous media was chosen. A Forchheimer coefficient \(F = 60 \) was adopted.
- Core power: It was imposed as a volumetric power source.
The steady state conditions were assessed for two power conditions:

- Case 1: 100kW
- Case 2: 265kW \textit{(Mesquita et al., 2011)}.

The simulation was carried out for 17h, using parallel computing.

For each hour of problem simulation, 3.42h of CPU time was required.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>37.0</td>
<td>[m]</td>
</tr>
<tr>
<td>ζ_{tot}</td>
<td>2001.2</td>
<td>[-]</td>
</tr>
<tr>
<td>Pump coef.</td>
<td>-0.01, 0.0, 13.0</td>
<td>[ms2/L2], [ms/L], [m]</td>
</tr>
<tr>
<td>Roughness</td>
<td>1×10^{-6}</td>
<td>[μm]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>47.0</td>
<td>[m2]</td>
</tr>
<tr>
<td>Ext. flow rate</td>
<td>11.1</td>
<td>[kg/s]</td>
</tr>
<tr>
<td>Ext. flow inlet temp</td>
<td>299.8</td>
<td>[K]</td>
</tr>
<tr>
<td>Ugl.</td>
<td>836.8</td>
<td>[W/m2K]</td>
</tr>
</tbody>
</table>
Steady-state condition
Results and analysis

Results - Steady-state condition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Experiment</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>100</td>
<td>265</td>
<td>265</td>
<td>[kW]</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>7.95</td>
<td>7.94</td>
<td>7.8</td>
<td>[Kg/s]</td>
</tr>
<tr>
<td>T_{bulk}</td>
<td>305.85</td>
<td>315.15</td>
<td>-</td>
<td>[K]</td>
</tr>
<tr>
<td>T_{inl}</td>
<td>302.54</td>
<td>306.46</td>
<td>-</td>
<td>[K]</td>
</tr>
<tr>
<td>T_{out}</td>
<td>305.73</td>
<td>314.26</td>
<td>-</td>
<td>[K]</td>
</tr>
</tbody>
</table>

Core

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Experiment</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{m}</td>
<td>3.4</td>
<td>4.7</td>
<td>4.42</td>
<td>[Kg/s]</td>
</tr>
<tr>
<td>T_{core}</td>
<td>309.46</td>
<td>321.7</td>
<td>-</td>
<td>[K]</td>
</tr>
<tr>
<td>T_{inl}</td>
<td>305.72</td>
<td>314.5</td>
<td>-</td>
<td>[K]</td>
</tr>
<tr>
<td>T_{out}</td>
<td>312.72</td>
<td>327.9</td>
<td>-</td>
<td>[K]</td>
</tr>
<tr>
<td>ΔT</td>
<td>7.0</td>
<td>13.4</td>
<td>14.3</td>
<td>[K]</td>
</tr>
</tbody>
</table>
Loss of forced convection event

- Event: A primary pump shut-down condition was simulated.
- Consequences: The loss of forced convection leads to a progressive coolant heating because the free-surface heat transfer is not enough.
- Core power: A constant core power of 265kW was assumed.
- The simulation was carried out for 5000s.
Results and analysis

Loss of forced convection event

∼ Video ∼
Results and analysis

Loss of coolant accident

- Event: A downstream 2A-LOCA pump condition was simulated.
- Solver: The compressible Volume of Fluid (VOF) solver (compressibleInterFoam) was used to track the free surface motion.
- Core power: A constant core power of 100kW was assumed.
- Consequences: A quick increase of the flow rate in the pump is caused by the loss of downstream circuit.
Results and analysis

Loss of coolant accident

~ Video ~
Conclusions

- The work address with the implementation of a new dynamic boundary condition in OpenFOAM 5.0, for coupling 0D and 3D CFD domains.
- The model was used to simulate operational and accidental conditions in the TRIGA MARK I reactor with different core powers.
- The TRIGA simulation results were in good agreement respect the design and experimental data.

- **Loss of forced convection event:** The pump shutdown quickly reduced the flow in the external circuit. The natural convection governs the flow circulation. In consequence, the reactor heats with a constant rate.

- **Loss of coolant event:** A quick increase of the flow rate in the pump is leaded by the loss of downstream circuit. The core is uncovered after 500s. Even though core temperature rising, saturation condition is not achieved.
The authors would like to thank:

- Universidade Federal de Minas Gerais.
- The Brazilian agencies CAPES, CNPq and FAPEMIG.
- Universidad Nacional del Litoral (CAI+D 2016 PIC 50420150100067LI).
- Agencia Nacional de Promoción Científica y Tecnológica (PICT 2016-2908)
- Consejo Nacional de Investigaciones Científicas y Tecnológicas.
Thank for your attention!