LASER PARTICLE ACCELERATORS IN BRAZIL

PERSPECTIVES FOR A BRAZILIAN PROGRAM

Nilson Dias Vieira Junior IPEN/CNEN-SP

COMPACT LASER ACCELERATORS FOR MEDICAL APPLICATIONS

- Nilson D. Vieira Jr. IPEN
- Sudeep Banerjee, University of Nebraska-Lincoln
- Edison P. Maldonado, Instituto Tecnológico de Aeronáutica -ITA
- Armando V. F. Zuffi, IPEN (Ph. D. student, CNPq)
- Fabio B. D. Tabacow IPEN (PCI, CNPq)
- Ricardo E. Samad IPEN

LASER INTENSITIES AND INTERACTIONS

Gerard Mourou, Physics Nobel Prize 2018

CPA: Mourou & Strickland, Opt. Comm. 55, (1985), 447

Linear optics (Solar radiation~ 0.1W/cm²)

(Mourou, G.A., et al., *Exawatt-Zettawatt pulse generation and applications*. Optics Communications, 2012. **285**(5): p. 720-724)

Components of a CPA TeraWatt System

Components of IPEN CPA TeraWatt System

IPEN TABLE TOP $TW = T^3$

Vacuum chamber

VISIT US at IPEN!

amplifier

ACCELERATION IN THE OPTICAL LASER FIELD INTENSITY I and tjhe electric field E

$$I = \Re e\left\{\frac{1}{2}E \times H^*\right\} = \frac{1}{2}c\epsilon_0 |E|^2$$

For a plane wave the Electric peak amplitude is

$$E(V/cm) = 27,5 \sqrt{I(W/cm^2)}$$

Under the oscillation of the sinusoidal electic field, The average kinetic energy U_P of the electron is: $U_P(MeV) = 9.3 \cdot 10^{-20} I(W/cm^2) \lambda (\mu m)^2$

LASER DIRECT IONIZATION - BOHR MODEL

Binding energy is 13,6 eV Atomic electrical field = 27.2 V / 0,5 Å= 54,4 V/Å = **5.44 GV/cm**

> Supression of the electrostatic Coulomb barrier

THRESHOLD FOR IONIZATION $I \sim 10^{14} \text{ W/CM}^2$

MAIN LASER ACCELERATION MECHANISMS

Ponderomotive Energy due to the quivering motion $U_P(MeV) =$ $9, 3 \cdot 10^{-20} I(W/cm^2) \lambda(\mu m)^2$

At the Intensity of $\approx 9 \cdot 10^{18} \,\text{W/cm}^2$ at 800 nm The electron kinetic energy is equal to the rest mas **0,511** MeV

LASER DIRECT ACCELERATION - LORENTZ FORCE

 $\mathbf{F}_L = e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

The second term (magnetic force) is along the laser incident direction Relativistic effect

LASER WAKEFIELD ACCELERATION

Laser with Gaussian Intensity Profile in a gas medium.

• Atoms/molecules are ionized ;

- The ionization front moves with the speed of the light and the ions remain in place;
- Electrons are forced out and then are pushed back to the axial position due to the attraction of the ions, eectrons oscillated around the equilibrium position with

$$\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$$

the plasma frequency and a wavelength $\lambda_p = \frac{2\pi}{\omega}$

THE WAKEFIELD OF THE LASER-PLASMA INTERACTION

The frequency and the wavelenght of the wakefield depend only on the electron population, n_e

$$\omega_p = \sqrt{\frac{n_e e^2}{m_e \epsilon_0}}$$

$$\lambda_p = \frac{2\pi c}{\omega_p} = 3.4 \ 10^{10} / \sqrt{n_e}$$

RESONANT OR BUBBLE REGIME

Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B 74, 355–361 (2002) a. pukhov meyer-ter-vehn

$$\lambda/2 = c. \Delta. t = W_0$$
 (the radius of the beam)
 $l \ge 4.2 \ 10^{18} \, \text{W/cm}^2 => P \ge 120 \, \text{TW}$

for $w_0 = 10 \mu m$

- C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, *et al.*, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," *Nature*, vol. 431, pp. 538-541, Sep 2004.
- S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, *et al.*, "Monoenergetic beams of relativistic electrons from intense laser-plasma interactions," *Nature*, vol. 431, pp. 535-538, Sep 2004.
- J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, *et al.*, "A laser-plasma accelerator producing monoenergetic electron beams," *Nature*, vol. 431, pp. 541-544, Sep 2004.

From the Nobel Prize Speech of Gerard Mourou

https://www.youtube.com/watch?v=W5Fz BsWCjU

ENERGY OF THE ELECTRON IN THE LWPA

The maximum electrical field is

 $E_0(v/cm) = c. m_e . \omega_p/e \cong 0.96 \sqrt{n_e(cm^{-3})}$ For $n_e = 10^{18} \text{ cm}^{-3} \rightarrow E_0 = 96 \, GV/cm$

(1 order of magnitude greater than the material limit) The acceleration range is the dephasing length $T/2 = L/v_a - L/c$

With
$$T = 2.\pi/\omega_p$$
 and $v_g = c \left(1 - \frac{\omega_p^2}{\omega^2}\right)$

Therefore:

$$L_{max} = \frac{2c\pi\omega^2}{\omega_p^3}$$

The maximum kinetic energy is $E_m = e \cdot E_0 \cdot L_m$

RESONANT OR BUBBLE REGIME

fs duration

- Iow repetition rate
- Large Laser System

Figure 2. Illustration of laser wakefield acceleration in the bubble

Charge was 5 pC at 7.8 GeV and up to 62 pC in 6 GeV peaks, and typical beam divergence was 0.2 mrad.
 Gas pressure ~ 1/10 atmosphere
 Highly nonlinear regime for injection

Raadt, et all and Leemans, W. P., "Petawatt laser guiding and electron beam acceleration to $8 \ GeV$ in a laser heated capillary discharge waveguide," Phys. Rev. Lett. 122, 084801 (Feb. 2019).

Few cm in LWPA compared to km long conventional accelerators!

INCREASING THE REPETITION AND DECREASING THE SIZE OF THE LASER SYSTEM

- Resonant Condition: $\lambda_p/2 = c.\Delta t = w_0 = radius of the beam waist$
- Scales with Δt^3 (area of the focus and length of acceleration)
- Therefore driving Optical power drops from PW to TW => kHz
- 24nA, few MeV, high pointing stability
- Jet nozzle size in the 100 μ m range
- Limited by the plasma critical density@800nm (1.710²¹ electrons/ cm^3)

ipen

REQUIREMENTS FOR THE GAS JET NOZZLE

Laser beam in a gas plasma

FIG. 1. Schematic of beam propagation issues in microscale jets. The dashed line represents the vacuum laser beam whereas the full line shows the beam size considering plasma effects. (a) The density gradients are large compared to z_R preventing the laser beam from reaching high intensity in the jet. (b) With sharper density gradients, coupling into the jet is optimized and the laser beam can reach higher intensities through self-focusing.

Laser beam in vacuum Rayleigth Parameter Z_R

$$\eta = \sqrt{1 - \frac{n_e}{n_c}}$$

Gaussian profile and increasing intensities **defocusing**

High-charge relativistic electron bunches from a kHz laser-plasma accelerator, D. Gustas et al, PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 013401 (2018)

RECENT DEVELOPMENTS All need de Laval jet nozzles!

Electron Acceleration with sub TW Laser with high density gas jets

- F. Salehi et all "MeV electron acceleration at 1 kHz with <10 mJ laser pulses," Opt. Lett. 42, pp.215-218 (2017)
- Goers, A.J., et al., Multi-MeV Electron Acceleration by Subterawatt Laser Pulses. Phys Rev Lett, 2015. 115(19): p. 194802.
- , J Faure et all, Plasma Phys, A review of recent progress on laser-plasma acceleration at kHz repetition rate.. Control. Fusion 61 (2019) 014012
- D. Gustas. High-charge relativistic electron bunches from a kHz laser-plasma accelerator, PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 013401 (2018)

Proton Acceleration with high density liquids and gases

- P. Puyuelo Valdé et all , "Laser driven ion acceleration in high-density gas jets", Proc. SPIE 11037, 10 (2019).
- John T Morrison1 et all MeV proton acceleration at kHz repetition rate from ultra-intense laser liquid interaction. New J. Phys. 20 (2018) 022001

REQUIRENTS FOR THE JET NOZZLE

Short pulse => high plasma frequency => high n_e

• Short homogeneous acceleration path (\approx 100 μ m plasma path)

• Ramp Shorter than the ZR ((\approx 10 μ m thick) – interface

between the jet nozzle and the vacuum Focused intensities above the relativistic self focusing

$$P_c \simeq 17.4 \left(\frac{\omega}{\omega_p}\right)^2 GW$$
$$= 17.4 \left(\frac{n_c}{n_e}\right) GW$$

$$\eta = \sqrt{1 - \frac{\omega_p^2}{\gamma \omega^2}}$$

QUASI-1D MODEL FOR DE LAVAL JET NOZZLE ISENTROPIC FLOW

Sylla, Fet all V. "Development and characterization of very dense © 东方C submillimetric gas jets for laser-plasma interaction," Rev. Sci. Instrum., 83, pp. 033507, 2012.

The important parameter is the Mach NUMBER *M and the backing pressure*

$$\dot{m} = A_t P_0 \sqrt{\frac{\gamma}{R T_0}} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$$

$$\frac{A_{e}}{A_{t}} = \frac{1}{M} \left[\frac{2 + (\gamma - 1)M^{2}}{\gamma + 1} \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\frac{1}{\frac{1}{p_{0}}} \frac{\rho}{\rho_{0}} = \frac{1}{M} \left[\frac{\gamma + 1}{2 + (\gamma - 1)M^{2}} \right]^{\frac{1}{(\gamma - 1)}}$$

HOME MADE DE LAVAL JET NOZZLE

• homemade ultrafast laser machining

system to etch a conic-shaped hole with a high aspect ratio

Assuming a N₂ backing pressure of 15 bar and using (1) to (4), we expected to obtain the mass (\dot{m}) and flow (v_1) rates, number density (n) and angle (α) shown in Table I.

TABLE I. CALCULATED CHARACTERISTICS FOR THE MANUFACTURED NOZZLE, MACH 2.5.

ṁ (kg/s)	<i>v1 (m³/h)</i>	n (cm ⁻³)	no/n	a (deg)
6×10 ⁻⁵	19.0	6×10 ¹⁹	12	23.6

The nozzle exit diameter is approximately 250 μ m M= 2.5

Laser Processing Center-fs pulses and nm precision

Texturization

Titanium

Microchannel etched in glass

13/26113-6 Dr. Wagner de Rossi

10 kHz, 30 fs, P = 2 W, Peak Power = 10 GW, 20 fs

GAS JET CHARACTERIZATION

Schlieren imaging & Mach-Zehnder interferometry

• Schlieren imaging

The second se

The prssure in the gas jet

At 1 Atm, gas density 2.5 10¹⁹ species/cm³

For N_{2:} 5 10¹⁹ atoms/cm³@1 Bar

· co.

 $\Delta \Phi = 2\pi \frac{\Delta OPL}{\lambda_I} \approx \frac{2\pi}{5}$ therefore: $\Delta OPL \approx \Delta n \Delta s \approx 127 \ nm$ from figure (blue lines): $\Delta s \approx 275 \mu m \Rightarrow \Delta n \approx 5e-4$ 10% Refractive Index (n-1) × 2000 1500 1000 500

from figure (red lines):

0 500 1000 1500 2000 2500 3000 3500 4000 Pressure (torr)

thus: $\Delta P \approx 1500$ torr ≈ 2 atm

REFERENCES:

- Sang, B H et al. "Pressure-Dependent Refractive Indices of Gases by THz Time-Domain Spectroscopy." Optics Express 24 (25):29040.
- Couperus, J P et al. "Tomographic Characterisation of Gas-Jet Targets for Laser Wakefield Acceleration." Nuclear Instruments and Methods in Physics Research, Section A 830, 504–9, 2016

Fig. 5. Typical Mach-Zehnder interferograms for 633 nm HeNe continuous beam transmission through the cross section of the gas jet near the exit of our Mach 2.5 nozzle, in background pressures of a) 1 atm and b) 10 mbar. The nozzle exit is in the lower edge of the frame and both images cover the first 500 µm of the jet; the applied backing gas pressure was 15 bars.

Fig. 4. Typical Schlieren image of the gas flow near the exit of ou Mach 2.5 nozzle, in background pressures of a) 1 atm and b) 10 mbar. The nozzle exit is in the lower edge of the frame, and both images cover the first 750 µm of the jet; the applied backing pressure was 15 bars.

Laser Pulse

Superposition of the Schlieren and plasma images, showing where typically the plasma forms.

M = 2.2 instead of the predicted 2.5;

ionization states up to N³⁺.
atomic density of ~1x10²⁰ cm⁻³
Max. electron density~ 6x10²⁰ cm⁻³

Laser Induced Breakdown Spectroscopy - LIBS

for the determination of macronutrients in plant materials , Spectrochimica Acta Part b, 63 (2008)1151-1158

Nitrogen Spectra

JET NOZZLES MADE BY FS LASER MACHINING WITH DUAL FIT – IPEN AND UNL

UNL flange

On going experiment – generation of electrons with our conditions

SELF MODULATED REGIME BUBBLE REGIME NEEDS HIGH POWER

- Non-resonant condition $\lambda_{\rm p}/2 < c \times \Delta t$
- Short acceleration path (\approx 100 μ m plasma path)
- Ramp Shorter than the ZR ((\approx 10 μ m thick) interface between the jet nozzle and the vacuum (de Laval nozzle)
- High repetition rates and high gas flows (no need for gas pulses)

Self-modulated laser wakefield mechanism. The initial laser pulse **undergoes** density modulation instability and breaks up into a train of shorter pulse with width λ_{P} .

SELF MODULATED REGIME

Electron injection needs laser power higher than the critical power P_c

$$P_c \simeq 17.4 \left(\frac{\omega}{\omega_p}\right)^2 GW = 17.4 \left(\frac{n_c}{n_e}\right) \text{GW}$$

=> high plasma frequency=>high electron density!

PIC SIMULATIONS (FBPIC) - E. PUIG (ITA)

* numerical computing parameters loosely following UCLA criteria: 20 pts/λ and 20 pts/w₀ (≈ 1 µm due to self focusing). See: Shaw et al. Plasma Phys. Control. Fusion 58 034008 (2016) (OBS. 1) Lu et al. Physical Review Special Topics - Accelerators and Beams 10, 1–12 (2007) - http://doi.org/10.1103/PhysRevSTAB.10.061301

Output along the propagation and traversal axis:

- Net Electricl field
- Net Charges
- Net current
- Net Momentum of the electrons

PIC SIMULATIONS (FBPIC) – E. PUIG (ITA) SIMULATION PARAMETERS

Laser

200 mJ, 50 fs, 4 TW Wavelength 0.8 μ m Spot radius: 5 μ m, Z_R = 80 μ m, 2Z_R = 160 μ m, Area~8 10⁻⁷ cm², 1 ~ 5 , 10¹⁸ W/cm² Laser pulse length= 15 μ m; Interaction parameters: $V_g = 0.99. c$ Plasma wavelength 5 μ m Dephasing length: 82 μ m Critical power for self focusing: 0.6 TW Self fosusing intensity: 1. 10²⁰ W/cm² >> 9. 10¹⁸

Gas Jet

He, 1 atm 2,5 10^{19} atoms/cm³ 5 10^{19} electrons/cm³ Ramp: 20 μ m Path: 180 μ m

Starting Position 0 fs 0 μm 0 interactions

Electric Field (V/m)

1e13

1.0

1e15 0.5

0.0

359 fs

410 fs

515 fs

769 fs

RESULTS OF SIMULATION

- •4 TW is enough for produciton of a 4 MeV electron beam with great divergence, nC charge,
- •series of bunches, with fs duration
- Electron Injection is due to the self focuuing and acceleration occurs in the self modulated regime.

PROTON ACCELERATION – TNSA MODEL THE ELECTRONS CLOUD ATTRACTS THE PROTONS

 Ion Acceleration—Target Normal Sheath Acceleration, M. Roth and M. Schollmeier, e Proceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva, Switzerland, 23–29 November 2014

PROTON ENERGY × LASER INTENSITIES

TABLE TOP NUCLEAR REACTIONS (ONLY FEW MEV)

EXFOR: Experimental Nuclear Reaction Data. 2017 [cited 2017; Available from: www-nds.iaea.org/exfor/exfor.htm]

PROTON THERAPY – BRAGG PEAK

Protonteraphy Due to the high resolution and depth: needs a strategic therapeutic plan to treat the tumor

Margin

for error

beak nage

> inge jues ient *vivo* nent that tion ited

Figure 1. For a lung tumor (outlined in green) abutting the heart (pink), the ideal treatment plan (a) would use a single proton beam (outlined by dashed white lines) that stops at the deepest edge of the tumor. Due to the beam-range uncertainty, however, a margin (orange shaded area) must be added to the treatment area targeted for the full prescribed radiation dose. The end of the beam range is thus inside the heart, which may suffer severe damage or functional complications. To avoid such risk to critical organs, a suboptimal plan (b) with two beams might be used instead, even though it now delivers a low to intermediate radiation dose to the healthy lung.

Physics Today 68, 10, 28(2015); <u>https://doi.org/10.1063/PT.3.2945</u>

62 (+38) Proton Therapy Facilities around the world

Home About Events The Science Patient Resources Protons for Kids News & Articles Member Resources Contact 🜉 Member Login/Register Field &

Proton Therapy Centers in the U.S.

The National Association for Proton Therapy

28 + 4 under construction

Proton and ion therapy in Europe

PROTON THERAPY FACILITIES IN CLINICAL OPERATION

(LAST UPDATE: SEP 2019) <u>HTTPS://WWW.PTCOG.CH/INDEX.PHP/FACILITIES-IN-OPERATION</u>

Country	Energy(MeV)	Starting year	
Austria	250	2015	
Canada	72	1995	
Czech Republic	230		
China (2)	250	2004, 2014	
Denmark	250	2015	
England (3)	62, 230, 250	1989, 2018, 2018	
France (3)	65, 230, 230	1991, 1991, 2018	
Germany (6)	250 (5), 430	1998, 2009, 2012, 2013. 2015	
India	230	2019	
Italy (3)	60, 230, 250	2002, 2011, 2014	
Japan (14), mostly Synchrotron	220 - 250	1994 -2018	
Poland	230	2011	
Russia (4)	200-150	1969-2018	
South Africa	200	1993	
South Korea (2)	230	2007-2015	
Switzerland	250	1984	
Taiwan	230	201'5	
The Netherlands (3)	230-250	2018	
USA (13)	230-250	1990-2014, 4 under construction	
Total	62 (+ 38 under construction)		

35 LASER FACILITIES: ACCELERATION FOR MEDICAL PURPOSES <u>HTTPS://WWW.PTCOG.CH/INDEX.PHP/FACILITIES-IN-OPERATION</u>

- PW Vulcan at RALab is now 40 y.o.
- ELI europe
- LaserNetUS
- 4 PW laser in China
- 100PW laser in Russia

University of Michigan	Utra short poled later	TiSapphie	10Pw; 100%
e method	Interaction between high electric field and matter		
Anapáx	High field physics.Medical opplication (eye surgery)		
en lexificade	Interaction between birth electric field and extrac		1001W, 20%, 10H4
h napix	High field physics Automobile processing		
			40%, 500mJ
	an and a loss of the stand of the standard sector		
h napix	Detection of explosive, Tightening malecular kinding, High speed processing is molecular law.		
			-Pw
e method Anneku	Interaction betweenhigh electric field and number Marked analysisters RCT Mich field advance		
			27W, 500k and 10PW, 60k
method	Interaction between high electric field and namer		
a napata Indere	Loose plasmo internalitan		1000W + 77W, 25-40 %, Troughtee
e method Antopix	Internation of Internet light with matter X-ray emission, x-ray applications		
			1001W + 201W, 25-60 fs, Ti-sappline
• method	brevaction of interce light with matter		
Anapix Grad Misson	X-ray enission, giant magnetic fields, cluber ionization		r Mir wurdenth bankle
• method	Utura short pole generation, Parametric amplification, Pole compression with hollow fiber		
Anapáx	High speed spectroscopy of malecular system, An second calements ray generation, Laser material pro	insing	170 at 13.04
a method	Optical parametric chipped pake amplification		2217, 2274
Anapies	Quantum uptics, High intensity high speed laser physics		
• nethod	Pulse compression with any capillary		<i>a</i>
Anapics	High order harmonics generation is water window region, x-ray microscopy		
			~ Associand
a ngan	sevenum samma, new resident disaterial observation, cannol, later chemistry	Nilolas	Scholarson MDW
- netad	Interaction between high electric field and matter		and personality and W
Anapix	Autrunany Terrestrial physics		
		0 •	
		4	
		5	
A number	Nacional International		
<u>an</u>	XUV, Calement X-ray	Tisapphaw	0.75 I, 25 TW, 20 N, 10 Ha
method	wakefield acceleration		
Anapha investive of Alberta	Loser accelerator Ultra-shart UV laser	Cettl aumond by Kr	100% 205mm
- method	Utra short palsed laser interaction with matter		
	H TuSapplite • Minimum Industri		5001, 5004, 1PW
	*		
	•		
	1		
• method	Interaction between heavy ion beam and high power laser		
ånapkx	Heavy ion beam interaction with matter Coherent a ray	X ray laws	~ul. 12.1m
netad	Fordert collisional excitation		
n latitut	bierteren: eubannafian		-pi, 22m
• method	Redictor opplication		
Anapix of University			set lites
• method			P1
ånapixx	Plasma kön-forameter		
			7.am
• method	Bechancelikianal excitation		
Anges the of Design	Kalatos oppisatos		21.2ws
			2.5mW, 46.9m
method	Dicharge excitation		
ånopkx	Obserbvation of biological specimen, optical examination	X ray FB	220MeV, 80ex Iborget: 6rel
a method	Unduiner		
anapáx.	Observation of biological specimen, solid state physics, ostrophysics		
			15GeV, 0.1-0.15ee
e method Artopics	Undulator Observation of biological specimen, solid state physics, astrophysics.		
e National Laboratory	- showing and and had an include		217MeV, S3Dex (under-upgrading to 700Mex; Slove)
e methad Antopics	Undulanar Ta provide High Brightness and High temparalizesolution synchrotron radiation source		
			Ranget - 1.Sous in 2007)
			harget - 10em is 2007 and 1.2em in 2009
			600MeV, 12we-75pe
Anges	Contention of 10-96, VDV-FEL, XUV-FEL, and synchrotron-radiation		20-1/ 100-1 100-1 100-
Annual contract	Land sector product a may	in a	rumy, rumo, rudis, 1.20mi
even National Laboratory			100fs;106~108 phanos/pulse
a method	Conser construction lines		
Anapáx	High speed divatural dynamics, high speed process disgnastics, microscopy, salverents - my scattering,	tructur al histoge	
			10-1005, 104Hz 1-104H
årtepås.	High speed's ray science, pump and prake experiment		
			2.5GeV, 200mA, 1.6mrad, 100%
ånepks	Orenistry, laiology, crystallingrophy, material science		
	NR and UV	BL-FL	10kw
ånegiks.	Photo nuclear reaction, material control, non-thermal processing		
	(Å say (~250meV)	RL .	(20MaV B1) 1GeV, 192 - 400m
• method	Inverse Compton scottwing		
& nepkx	Photo nuclear reaction, solid state physics.		

Financial Support - Phase 1, 2017-2020

- FAPESP Week (Nebraska & Texas-2017);
- Visiting Scientist 2017/21124-0;
- Project: Mobility-University of Nebraska-Lincoln (2018/2596)
- FAPESP Institutes 2017/50332-0;
- Project CNPq 300616/2017-1
- Project (N° 63230.004277/2018-55)
- Submitted: FAPESP-FAPERG 2019/15387-4
- FAPESP Pos-doctoral position in the project

Map of the High intensity Lasers > 1×10^{19} W/cm²

ICUIL World Map of Ultrahigh Intensity Laser Capabilities

THANK YOU FOR YOUR ATTENTION

ICUIL World Map of Ultrahigh Intensity Laser Capabilities

