INAP The Purpose of a Multipurpose Reactor

By Néstor De Lorenzo - INVAP – Argentina delorenzo@invap.com.ar

04/09 October 2015 Sao Paulo Brazil

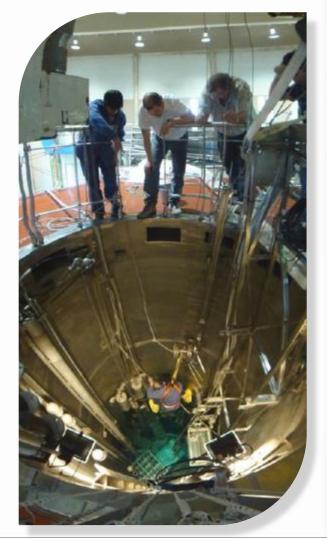
My background in RR

- Reactor Manager (RM) of the Argentinean reactors RA-6 and RA-8.
- Staff Trainer and Commissioning RM of the Algerian NUR and Egyptian ETRR-2 reactors.
- Design Team Member, power ramping-up Commissioning Manager and Advisor of the Operation Team of the Australian OPAL reactor.
- INVAP Project Manager for DIPR, RMB, RA10, MIPF, Pallas.
- Manager of INVAP RR and Associated Facilities Section.

- Attractiveness of a Business Plan based on multiple "products".
- Availability of stakeholders and investors.
- Better public acceptance.
- Possibility to develop user communities.

But...

- Increased initial and operational costs.
- Greater complexity.
- Licensing risks



- IAEA initiatives (such as ICERR).
- A small project (≈50 M USD) to develop skills.
- A proven licensed reactor (TRIGA experience) flexible enough to accommodate different applications.
- A larger project but including a limited number of features.
- MPR based on strategic plans developed by mature organizations (ANSTO, CNEN, CNEA, etc.).
- Others (such as single purpose facility / retrofitting of existing facilities)

Single purpose reactor

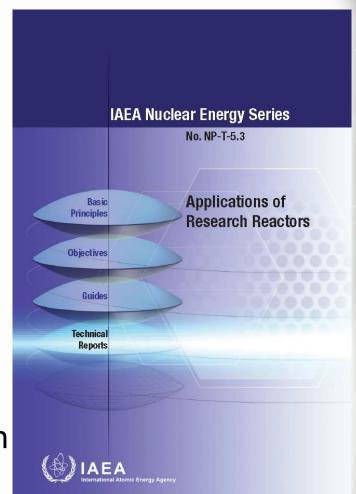
- Critical and subcritical assemblies
- Homogeneous reactors
- Energy production
- Water desalinization
- Non-civilian purposes

IN*VA*P

- Some designs allow for modifications to accommodate new applications.
- New applications compete with others.
- Late implementations are not efficient
 - On-service samples loading / withdraw
 - Doses are not "ALARA"
 - Production rates & performance far from optimum
 - Required performance obtained sometimes at the expense of stand by units.

INI/AP

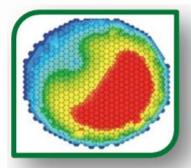
- RA-6 thermal column
 - Original setup: two graphite sections (1st inside the pool / 2nd in the reactor block)
 - First modification: enlarging the irradiation volume in the reactor block section
 - Second modification: replacing 1st section by a filter and collimator / install a filter and beam conditioner shaper in the 2nd section
 - Outcome: a BNCT facility
- Modifications driven by molybdenum production


Applications and Facilities

- Facilities may accommodate different Applications. Examples are:
 - Pneumatic rabbit
 - Radioisotope production
 - NAA
 - Beams
 - Dry neutron radiography
 - SANS
- Applications require specific support equipment in addition to those implemented in the Facility.

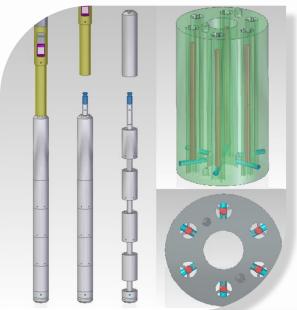
Applications as per IAEA

INV/AF


- Education and Training
- Neutron Activation Analysis
- Radioisotope Production
- Transmutation Effects:
 - Silicon Transmutation Doping
 - Gamma Irradiation
 - Gemstone coloration
- Neutron Imaging
- Neutron Beam Application
- Boron Neutron Capture Therapy
- Instrument testing and calibration
- Loops for testing

Selection of Facilities

- Characterization of the Facility:
 - Volume
 - Neutron Fluxes
 - Neutron Spectra
 - Support Services
 - Impact on design and costs
- Competence between facilities:
 - Allowable perturbations
 - Requirements on the reactor status



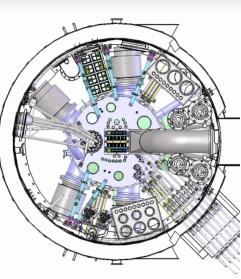
Analysis of some Facilities

INI/AP

- Facilities
 - Beams
 - Irradiation Positions:
 - In-core
 - Out-of-core
 - Bulk
 - Short residence time
 - Irradiation loops
 - Radioisotope production positions
- Analysis on:
 - Equipment
 - Impact

Equipment for Beams

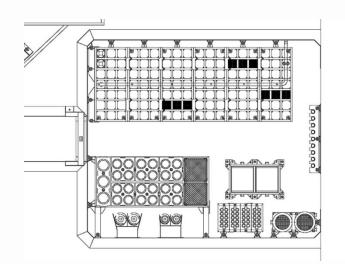
- Shutters
- Filters
- Neutron guides
- Cold, Thermal and Hot Neutron Sources
- In-pile cooling
- Shields
- Pool leak prevention and detection
- Positioning and lifting equipment for instruments

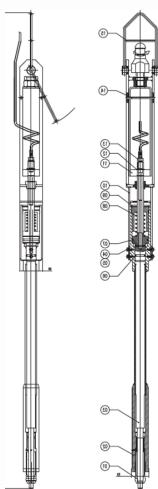


Impact of Beams

INI/AP

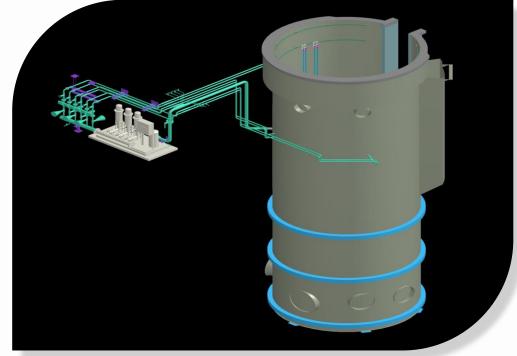
- Beams:
 - Core height:
 - Pool position
 - Confinement height
 - Site layout:
 - Beam Halls for Instruments
 - Future expansions
 - Facility layout:
 - Space for experiments
 - Circulations


Equipment for Irradiation Positions

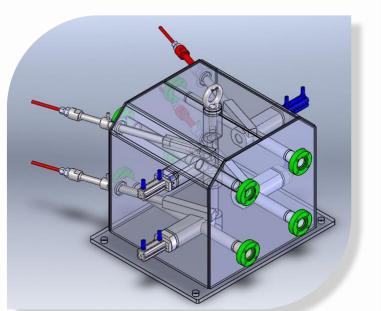

- Cooling
- Flux flatteners
- Underwater instrumentation (cabling)
- Special detection systems (e.g. delayed neutrons detectors)
- Locking devices
- Lifting equipment
- Special toolkit

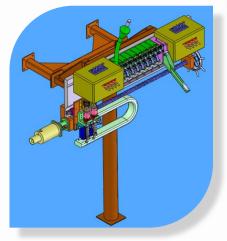
Impact of Irradiation Positions

- Space and devices for rigs assembly / disassembly.
- Waste storage.
- Hot workshop.
- Remote operation tools.


Special case of Silicon Doping

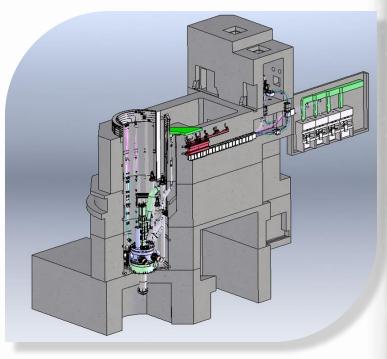
- Silicon doping
 - Rotation system
 - Assembly space
 - Large storage





Equipment for Short Residence Time Irr. Pos.

- Pneumatic triggering system
- Cooling system
- Rabbit cans
- Reception station
- Shielding
- Interlocking/measuring devices



KV/E

Impact of Short Residence Time Irr. Pos.

- Reactivity insertion rate
- Tubing accessibility and shielding
- Decay stations
- Remote dose monitoring
- Waste management/ Reuse / Recycle
- Gas bottles

Equipment for Loops

- Underwater Positioning System
- Core components protections:
 - Smash
 - Jets / Explosions
 - Heat
 - Chemical
- Connections:
 - Instrumentation
 - (Reactor) Protection System
- Services:
 - Chilled water
 - Filtered vents
 - Industrial Gases

Impact of Loops

INV/AP

- Reactivity worth
- Underwater connections
- Space for assembly / disassembly
- Underwater storage / resting places
- Heavy equipment
- Shielded bunkers / glove boxes

Equipment for Radioisotope Production

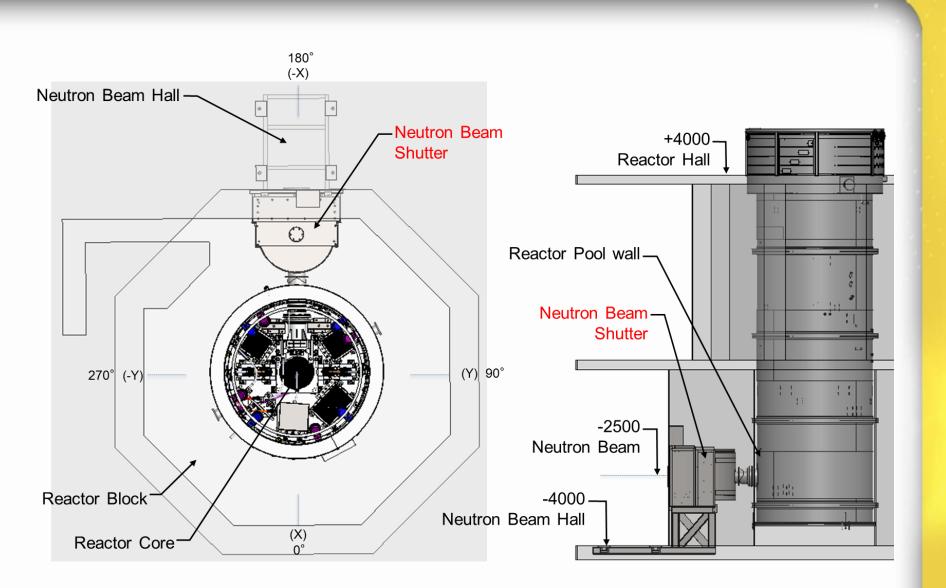
- Hot cells for:
 - Assembly / disassembly
 - Conditioning
 - Processing
- Transfer equipment:
 - Hatches and access
 - Elevators
 - Containers
 - Transport systems
 - Monitoring

Impact of Radioisotope Production

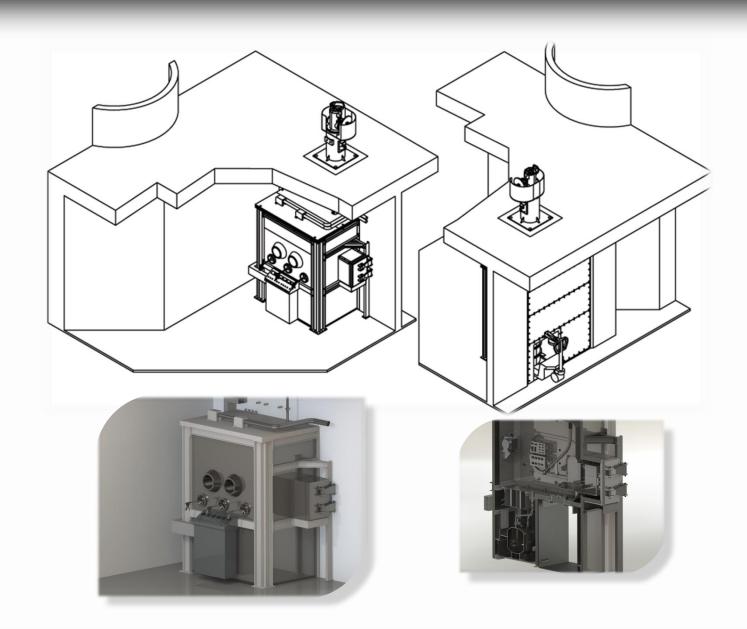
- Contamination hazard
- Lifting of heavy loads
- Hot cell maintenance:
 - Tools and spares
 - Breathing air
 - Trained operators
- Decontamination and Storage of containers

At the end of the day, how a MPR looks like?

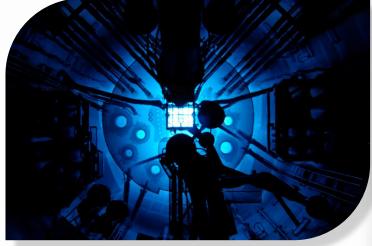
Which reactor is a MPR?


30 MW

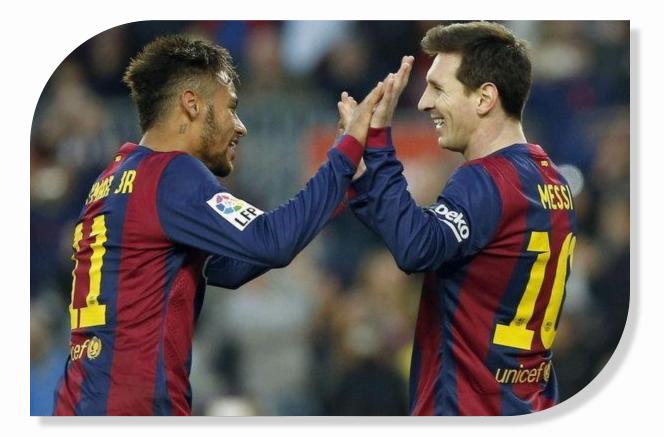
30 kW


Neutron Beam

Radchem Hot Cell



Conclusion


INI/AP

- A Multipurpose Reactor is a facility able to run several applications at the same time without noticeable interference between them.
- OPAL reactor is an outstanding example of Multipurpose Reactor:
 - 300 FPD per year
 - Products up to mid 2015:
 - 6496 irradiated U plates
 - 628 irradiated Te targets
 - 26000+ irradiated Si ingots
 - 500+ research papers
 - 10+ state of the art research instruments

Muito obrigado pela sua atenção

