Nuclear Security Education at Texas A&M University

Dr. Sunil Chirayath
Interim Director & Associate Director, Nuclear Security Science & Policy Institute
TAMU Research Assistant Professor, Nuclear Engineering Department
Texas A&M University
College Station, TX 77843-3473
sunilsc@tamu.edu
NSSPI Mission

• We employ science, engineering, and policy expertise to:
 – Conduct research & development to help detect, prevent, and reverse nuclear and radiological proliferation and guard against nuclear terrorism
 – Educate the next generation of nuclear security leaders
 – Analyze the relationship between policy and technology in the field of nuclear security
 – Serve as a public resource for knowledge and skills to reduce nuclear threats

• We seek multi-disciplinary technological solutions to problems associated with the malevolent use of nuclear and radiological materials; NSSPI strives to integrate these technological solutions within a policy framework
Nuclear Security Education

• TAMU has one of the most robust technical nuclear security education programs in the world

• Program includes:
 – Graduate and undergraduate courses
 – MS degree in Nuclear Engineering with a specialization in Nonproliferation
 – Certificate offerings
 • Nuclear security certificate
 • Interdisciplinary nuclear forensics certificate
 • Summer nuclear security certificate
 – Tabletop exercises involving political and technical aspects of global nuclear security
 – Field exercises at Disaster City Training Facility

• Other facts:
 – Approximately 35 students in the program
 – Supported 73 MS students and 31 Ph.D. students
 – 40 MS graduates specialized in nuclear nonproliferation
 – 16 Ph.D. graduates in nuclear engineering
Outline

• Overall Program Characteristics
 – Course Inventory
 – Program Educational Objectives
 – Program Elements
 – Online Asynchronous Learning Modules

• MS Degree Program

• Summer Certificate Program

• Other Certificates

• Conclusions

• Future Developments
OVERALL PROGRAM CHARACTERISTICS
Program Educational Objectives

• To produce leaders in the development of technological solutions to prevent, detect, and deter proliferation and combat nuclear terrorism. These graduates can:
 – apply engineering techniques to design 3S systems for nuclear facilities
 – understand the international security policy implications of technology
 – Critically evaluate technical data to aid proliferation detection
 – perform quantitative measurements of nuclear and radiological materials and detect sources of radiation outside of regulatory control
 – apply science and engineering as part of a comprehensive nuclear security program including nuclear forensics and consequence management
 – perform fundamental and applied research independently and in small multidisciplinary groups that can lead to the creation of new knowledge in the field of nuclear nonproliferation
Course Inventory

- **General Nonproliferation Courses**
 - NUEN 650 – Nuclear Nonproliferation and Arms Control
 - NUEN 605 – Radiation Detection and Nuclear Materials Measurement
 - INTA 620 – International Security
 - INTA 617 – Deterrence

- **Safeguards Courses**
 - NUEN 651 – Nuclear Fuel Cycles and Nuclear Material Safeguards

- **Security Courses**
 - NUEN 451 – Nuclear Security System Design
 - INTA 669 – Threat Assessment
 - INTA 657 – Terrorism in Today’s World
 - NUEN 689 Consequence Management

- **Forensics Courses**
 - NUEN 656/610 – Critical Analysis of Nuclear Security Data
 - CHEM 689 – Radiochemistry and Nuclear Forensics
 - MATH 644 – Inverse Problems in Nuclear Forensics
Online Learning Modules
(http://nsspi.tamu.edu/NSSEP)

- Module characteristics
 - text, graphics, videos, wikis, quizzes
- Currently deployed:
 - Basic Radiation Detection
 - Nuclear and Atomic Physics
 - The Nuclear Fuel Cycle
 - Introduction to Statistics
 - Containment and Surveillance
 - Nuclear Material Accountancy
 - Physical Protection Systems
 - Nuclear Security Threats
 - Safeguards Terminology
 - Treaties and Legal Issues
 - Nuclear Security Culture
 - Insider Threat
- Shortly Coming up:
 - Uranium Enrichment Safeguards
 - Spent Fuel Storage Safeguards
Statistics

• From October 1, 2011 to October 1, 2015 over 69,000 unique users accessed NSSEP
 – This is a level of outreach that would have been impossible to produce with traditional learning methods

• In this period, the courses have seen traffic as follows:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Number of Page views</th>
<th>Date Released</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Radiation Detection</td>
<td>57,018</td>
<td>1-Jun-2009</td>
</tr>
<tr>
<td>Basic Nuclear and Atomic Physics</td>
<td>39,883</td>
<td>1-Jun-2009</td>
</tr>
<tr>
<td>Introduction to Statistics</td>
<td>38,699</td>
<td>1-Jun-2009</td>
</tr>
<tr>
<td>The Nuclear Fuel Cycle</td>
<td>33,273</td>
<td>1-Jun-2009</td>
</tr>
<tr>
<td>Physical Protection Systems</td>
<td>28,566</td>
<td>1-Jan-2012</td>
</tr>
<tr>
<td>Threats to Nuclear Security</td>
<td>11,030</td>
<td>1-Jan-2012</td>
</tr>
<tr>
<td>Nuclear Materials Accountancy</td>
<td>9,158</td>
<td>1-Oct-2011</td>
</tr>
<tr>
<td>Containment and Surveillance</td>
<td>5,491</td>
<td>1-Oct-2011</td>
</tr>
<tr>
<td>Insider Threats</td>
<td>2,209</td>
<td>30-Jun-2015</td>
</tr>
<tr>
<td>Nuclear Security Culture</td>
<td>2,112</td>
<td>30-Jun-2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of NSSEP Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>29,402</td>
</tr>
<tr>
<td>India</td>
<td>6,650</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3,437</td>
</tr>
<tr>
<td>Philippines</td>
<td>2,428</td>
</tr>
<tr>
<td>Canada</td>
<td>1,763</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1,486</td>
</tr>
</tbody>
</table>
MS DEGREE PROGRAM
Topics Covered

• Fundamental Nuclear Engineering
 – Interactions of Radiation with Matter
 – Radiation Detection
 – Reactor Physics
 – Radiation Transport
 – Nuclear Fuel Cycles

• Nuclear Safety
 – Radiation Shielding
 – Radiation Protection
 – Reactor Engineering

• Nuclear Nonproliferation
 – History and Policy Impacts
 – Proliferation Detection
 – Export Controls

• Nuclear Safeguards
 – Nuclear Material Quantification and Accountancy
 – Safeguards System Design

• Nuclear Security
 – Threat Assessment
 – Physical Security
 – Border Security
 – Nuclear Forensics

10/6/2015
NSSPI-15-039
Nonproliferation MS Degree Curriculum

<table>
<thead>
<tr>
<th>Course Designation and Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Year 1</td>
<td></td>
</tr>
<tr>
<td>NUEN 650 Nuclear Nonproliferation and Arms Control</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 604 Nuclear Radiation Shielding</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 605 Rad Detection and Nuclear Materials Measurement</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 681 Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Spring Year 1</td>
<td></td>
</tr>
<tr>
<td>NUEN 601 Nuclear Reactor Theory</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 606 Nuclear Reactor Analysis and Experimentation</td>
<td>4</td>
</tr>
<tr>
<td>NUEN 651 Nuclear Fuel Cycles and Nuclear Material Safeguards</td>
<td>3</td>
</tr>
<tr>
<td>Fall Year 2</td>
<td></td>
</tr>
<tr>
<td>NUEN 656/610 Critical Analysis of Nuclear Security Data</td>
<td>4</td>
</tr>
<tr>
<td>NUEN 681 Seminar</td>
<td>1</td>
</tr>
<tr>
<td>NUEN 691 Research</td>
<td>4</td>
</tr>
<tr>
<td>Spring Year 2</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 691 Research</td>
<td>6</td>
</tr>
</tbody>
</table>
NSSPI’s Many Customers
NSSPI Array of Activities

Students
- Graduate and UG courses in safeguards, security, and safety
- Program emphasizes both science and policy concerns
- Founded first INMM student chapter

Hands-on Safeguards Education
- Short courses at National Laboratories
- Direct, practical experience with safeguards technology

Workshops
- Domestic and international
- Global nuclear security topics

Research
- Innovative research on all aspects of safeguards, security, and nonproliferation

Faculty / Scientist Exchange
- NSSPI faculty travel to the National Labs to teach courses
- National Lab researchers maintain joint faculty appointments

International Collaborations
- International programs and education support
- INMM and ESARDA conferences and workshops

Informing the Public
- NSSPI News Digest, daily summary of news and research on global nuclear issues
- Searchable database of articles on NSSPI website

Distance Education
- Lectures given to international students through video conferencing
- Nuclear Safeguards Education Portal (NSEP)
Strong Research Focus

- Safeguards Instrumentation Development
- Novel Detection Systems with Robotics Support
- Nuclear Forensics
 - Pre-detonation and post detonation
- Reactor Analysis for Proliferation Detection
- Nuclear Security and Deterrence Analysis using Game Theoretic & Bayesian Network Models
- Proliferation Resistance Analysis
- Consequence Management
SUMMER CERTIFICATE PROGRAM
Nuclear Security Certificate
8-Week Summer Program

• May, June and July

• Educational Outcomes:
 – Produce nuclear professionals who will lead efforts to reduce the nuclear and radiological security risks
 – Raise the awareness of nuclear security in nuclear professionals working in industry, research facilities, government, or in academia.

• Program Learning Objectives:
 – apply science and engineering as part of a comprehensive nuclear security program
 – apply engineering techniques to design security systems and infrastructure at the State and facility level
 – understand the international security policy implications of technology developments
 – generate an estimate of nuclear security threats
 – perform quantitative measurements of nuclear and radiological materials and detect sources of radiation outside of regulatory control
Nuclear Security Certificate Components

• Executive Seminars
• Self-Paced Learning Modules (using NSSEP)
• Tours
• Simulation and Tabletop Exercises
• Summer Session Courses:
 – NUEN 657 Global Nuclear Security
 • (2 credit hours)
 – NUEN 689 Nuclear Security Radiation Detection Fundamentals
 • (2 credit hours)
 – INTA 689 Nuclear Security Threat Assessment and Analysis
 • (1 credit hour)
• Optional Participation in the INMM Annual Meeting
International Engagement

NSSPI is heavily involved in international activities

– Observer status at the IAEA General Conference
– Research collaborations with Russia, France, India, and Japan
– Educational collaborations in UAE, Russia, India, UK, Japan, Malaysia, Indonesia, Jordan, Brazil
– Nuclear Facilities Experience for students in Japan, UK, France
OTHER CERTIFICATE PROGRAMS
Nuclear Security Certificate

<table>
<thead>
<tr>
<th>Relevant Nuclear Security Area</th>
<th>Course Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of sensors/sources for radiation detection in nuclear security</td>
<td>NUEN 605 (Radiation Detection and Nuclear Materials Measurement)</td>
</tr>
<tr>
<td>Global nuclear security policies</td>
<td>NUEN 650 (Nuclear Nonproliferation and Arms Control)</td>
</tr>
<tr>
<td>Threat Analysis and Assessment</td>
<td>INTA 669 (Nuclear Security Threat Assessment)</td>
</tr>
<tr>
<td>Design and analysis of security systems for nuclear and radiological facilities</td>
<td>NUEN 451 (Nuclear Security System Design)</td>
</tr>
</tbody>
</table>

Students must complete 3 out of 4 courses to earn certificate
Nuclear Forensics Certificate

<table>
<thead>
<tr>
<th>Relevant Nuclear Forensics Areas</th>
<th>Course Developed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear and radioactive material measurement methods and technology</td>
<td>NUEN 605 (Radiation Detection and Nuclear Materials Measurement)</td>
</tr>
<tr>
<td>Radiochemistry and separations processes</td>
<td>CHEM 689 (Radiochemistry and Nuclear Forensics)</td>
</tr>
<tr>
<td>Inverse analysis methods to evaluate measurements</td>
<td>MATH 664 (Inverse Problems in Nuclear Forensics)</td>
</tr>
<tr>
<td>Forensics evaluation and integrating sample collection and analysis to arrive at technical conclusions</td>
<td>NUEN 656/610 (Critical Analysis of Nuclear Security Data)</td>
</tr>
</tbody>
</table>

Students must complete all 4 courses to earn certificate
CONCLUSIONS
The Product of this Program

• Students produced from this program will have
 – a strong disciplinary background in traditional nuclear engineering
 – ability to apply engineering principles to nuclear security issues
 – an introduction to the policy aspects of nuclear security

• These students typically will seek employment at
 – US national laboratories
 – government
 – intelligence
 – nuclear industry
 – insurance industry
 – security consultants and vendors
 – etc.
FUTURE DEVELOPMENTS
Distance ME Degree

- We are also in the process of implementing a distance Masters of Engineering 3S degree
- Courses will be taught synchronously using web meeting software, online quizzes, and making use of asynchronous materials where appropriate
- Will include distance laboratory components
- We would benefit from having a distance component to the nuclear security certificate
NSSPI Campus Engagement

NSSPI engages with colleges and departments across TAMU
 - Engineering, Science, Geosciences, Liberal Arts, Bush School of Government and Public Service, Agriculture and Life Sciences
Backup Slides
Module Characteristics

• Modules are designed to employ asynchronous technology
 – asynchronous: text, graphics, wiki entries, videos, FAQ, email questions

• 1-5 hours of asynchronous course material per module

• Small self-assessments to assess learning outcomes

• Display textual and graphical content that describes basic material
 – highlighted text links to wiki

• Text is supplemented by short video clips (3-12 min) that describe the material in more detail
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initiation</td>
<td>Introductory Seminars</td>
<td>Self-Paced Learning Modules (Fuel Cycles, Detection, Security)</td>
<td>Security Culture</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer Classes</td>
<td></td>
<td></td>
<td>Tour Med Ctr</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer Classes</td>
<td></td>
<td></td>
<td>Q&A Sessions</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer Classes</td>
<td></td>
<td></td>
<td>Tour NSC</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer Classes</td>
<td></td>
<td></td>
<td>Q&A Sessions</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer Classes</td>
<td></td>
<td></td>
<td>Holiday</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exams</td>
<td>Security Culture Exercise</td>
<td>Security Management Exercise</td>
<td>Tour STP</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEEX Disaster City Exercise</td>
<td></td>
<td>Graduation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INMM Annual Meeting (Participation Optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Executive Seminars

- History of Nuclear Development and Global Nuclear Outlook
- Uses of Nuclear and Radiological Materials
- Global Nuclear Security Regime
- Legal and Regulatory Issues
- Roles and responsibilities of people/organizations for nuclear security, safeguards, and safety
- Security Culture
- Nuclear Security Management
- Comprehensive Nuclear Security Approach