RECENT EXPERIMENTS IN THE IPEN/MB-01 REACTOR

Adimir dos Santos

asantos@ipen.br
The IPEN/MB-01 Research Reactor Facility

The IPEN/MB-01 thermal research reactor is a zero power critical facility specially designed for measurement of a wide variety of reactor physics parameters to be used as benchmark experimental data. Several IPEN/MB-01 critical configurations have been benchmarked by ICSBEP (see September 2014 edition) and many of its experiments are available at IRPhE DVD (see March 2015 edition)

Location: São Paulo, Brazil

Core configuration: 28x26 rectangular array of UO$_2$ fuel rods inside a light water tank

235U Enrichment: 4.3486 wt. %

Control banks: 12 Ag-In-Cd rods

Safety banks: 12 B$_4$C rods
Two activities going on right now at the IPEN/MB-01 reactor are shown here.

a) Validation of the Delayed Neutron Data of the recent nuclear data libraries; namely: ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0, JENDL-3.3, and JEFF 3.1.1. The Nickel heavy reflector experiment is employed for this purpose.

b) Experimental determination of the reaction rates (238U(n,γ) and 235U(n,f)) along the pellet radius.
Delayed Neutron Data Validation
Nickel Heavy Reflector Experiment Configuration
Axial View of the Positioning of the Ni Plate relative to the IPEN/MB-01 core
Quantity Measured is the reactivity inserted per Ni plate. Inverse kinetic model is employed for this purpose.

\[\frac{dN(t)}{dt} = \frac{\rho(t) - \beta}{\Lambda} N(t) + \sum_{i=1}^{6} \lambda_i C_i(t) \]

\[\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} N(t) - \lambda_i C_i(t) \]

\[\rho(t) = \frac{\Lambda}{N(t)} \frac{dN(t)}{dt} + \beta_{\text{eff}} - \frac{\Lambda}{N(t)} \sum_{i=1}^{6} \lambda_i C_i(0)e^{-\lambda_i t} \]

\[- \frac{1}{N(t)} \sum_{i=1}^{6} \lambda_i \beta_i e^{-\lambda_i t} \int_{0}^{t} N(t') e^{\lambda_i t'} dt' \]
Measured effective kinetic parameters for the IPEN/MB-01 core

<table>
<thead>
<tr>
<th>β_i</th>
<th>$\lambda_i ; (s^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2.679 \pm 0.023)E-4$</td>
<td>0.012456 ± 0.000031</td>
</tr>
<tr>
<td>$(1.463 \pm 0.069)E-3$</td>
<td>0.0319 ± 0.0032</td>
</tr>
<tr>
<td>$(1.34 \pm 0.13)E-3$</td>
<td>0.1085 ± 0.0054</td>
</tr>
<tr>
<td>$(3.10 \pm 0.10)E-3$</td>
<td>0.3054 ± 0.0055</td>
</tr>
<tr>
<td>$(8.31 \pm 0.62)E-4$</td>
<td>1.085 ± 0.044</td>
</tr>
<tr>
<td>$(4.99 \pm 0.27)E-4$</td>
<td>3.14 ± 0.11</td>
</tr>
</tbody>
</table>

$\beta_{eff} = (7.50 \pm 0.19)E-3$, $\Lambda = 31.96 \pm 1.06 \; (\mu s)$
Reactivity (pcm)

Time (s)

$\Delta \rho = 49.37 \quad \sigma_{\Delta \rho} = 0.15$

$\rho = -173.49 \quad \sigma_{\rho} = 0.23$
Theory/Experiment Comparison

The Effective Delayed Neutron Parameter of the several nuclear data libraries of this work were calculated by Steven Van Der Mark, Netherlands employing MCNP5.

Comparison is shown as:
(C-E)/E ± 1σ in units of %.
ENDF/B-VII.1

(C-E)/E (%) vs. Reactivity (pcm)
ENDF/B-VII.0

Reactivity (pcm)

(C-E)/E (%)
JENDL-3.3

Reactivity (pcm)

(C-E)/E (%)
<table>
<thead>
<tr>
<th>$(C-E)/E$ (%)</th>
<th>β_{eff}</th>
<th>λ_1 (s$^{-1}$)(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDF/B-VII.0</td>
<td>0.00 ± 0.82</td>
<td>0.01249</td>
</tr>
<tr>
<td>ENDF/B-VII.1</td>
<td>-0.53 ± 0.94</td>
<td>0.01335</td>
</tr>
<tr>
<td>JEFF-3.1.1</td>
<td>2.13 ± 0.95</td>
<td>0.01247</td>
</tr>
<tr>
<td>JENDL-3.3</td>
<td>-0.55 ± 0.94</td>
<td>0.01244</td>
</tr>
<tr>
<td>JENDL-4.0</td>
<td>-0.67 ± 0.94</td>
<td>0.01248</td>
</tr>
</tbody>
</table>

(a) The experimental value is 0.012456 ± 0.000031.
238U capture and fission rates along the pellet radius.
Dismountable Fuel Rod and Positioning of the \(\text{UO}_2 \) disk

The \(\text{UO}_2 \) disk was obtained cutting of the IPEN/MB-01 \(\text{UO}_2 \) pellets by a sharp tool. The Uncertainty in the \(\text{UO}_2 \) disk thickness was less than 1\%.
Cadmium Sleeve Arrangement and Positioning

Support

Cadmium Sleeve

UO₂ DISK

7 cm

1.5 cm

0.5 mm
Irradiation Conditions

100W
One hour
20 °C
Critical Control Bank
Position: 58% Withdrawn
Gamma Detection System

LED HPGe Detector

-Small crystal with high efficiency for energies between 50 – 200 keV.
The selected gamma energies was chosen to improve the collimator effectiveness. The lower the better.

238U Radiative Capture:

Inferred from the 239Np gamma decay.
$E_\gamma=106.12$ keV with 27.2 emission probability

Total Uranium Fissions
Inferred from Gamma of FP 99Mo.
$E_\gamma = 140.51$ keV
Lead Collimator Disk
- Correction Factors Applied to the Experimental Data

 a) Gamma Self-Absorption in the UO$_2$ Disk
 b) Solid Angle Correction (Collimator)
 c) Collimator Shielding Effectiveness.

- Reported Experimental Data are shown relative to the case without collimator (full disk).
- Quantities reported:

238U neutron Capture
Uranium fission density
Theory/Experiment Comparisons. Calculated Values From MCNP5 (ENDF/B-VII.0) for all cases.

Total 238U(n,γ)
Epithermal $^{238}\text{U}(n,\gamma)$
Thermal 238U(n,γ)
Total $U(n, f)$
Epithermal U(n,f)
Conclusions

-Effective Delayed Neutron Parameters

a) JENDL 4.0 shows excellent agreement. All calculated values are inside of 1σ of the experimental uncertainty.

b) JENDL3.3 and JEF 3.1.1 overestimated the reactivity by around 5%. A little bit over the 1σ value.

c) ENDF/B-VII.0 and –VII.1 underestimate the reactivity by around 11%.
Conclusions

- Reaction rates along the pellet radius
 a) Experiments so far successfully performed

b) Epithermal $^{238}\text{U}(n,\gamma)$ shows very good agreement.

c) Thermal reaction rates show a lot of discrepancies.

d) The experiments suggest that the thermal cross section shape of $^{235}\text{U}(n,\text{f})$ in ENDF/B-VII.0 is not well represented.

e) The same applies to the thermal $^{238}\text{U}(n,\gamma)$ cross sections.
Thanks for the Attention