IAEA Activities in LTO Area

Robert Krivanek – R.Krivanek@iaea.org
Project manager for LTO
Division of Nuclear Installation Safety

Contents

1. SALTO (Safety Aspects of LTO) Peer Review Service

2. IGALL (International Generic Ageing Lessons Learned) Programme

Personal introduction

- Name: Robert Krivanek
- Position in IAEA
 - Safety Officer
 - Operational Safety Section
 - Division Nuclear Installation Safety

- Current main activities in IAEA
 - project manager for LTO
 - SALTO peer review service
 - IGALL programme (International Generic Ageing Lessons Learned)
 - national projects on ageing management and LTO
 - since February 2012 with IAEA
- Background
 - 18 years with ČEZ Company, Czech Republic in operation and engineering

Definition of Long Term Operation

Operation beyond an established timeframe set forth by, for example, licence term, design, standards, license and/or regulations, which has been justified by safety assessment, with consideration given to life limiting processes and features for systems, structures and components.

Challenges of safe long term operation

1. Unclear national energy strategy

- a. Difficult to decide on investment for LTO
- b. Lack of rules for LTO preparation

2. Routine operation of old units

- a. Difficult to acquire young engineers
- b. The best personnel attracted to operation of new modern plants

3. Post-Fukushima situation

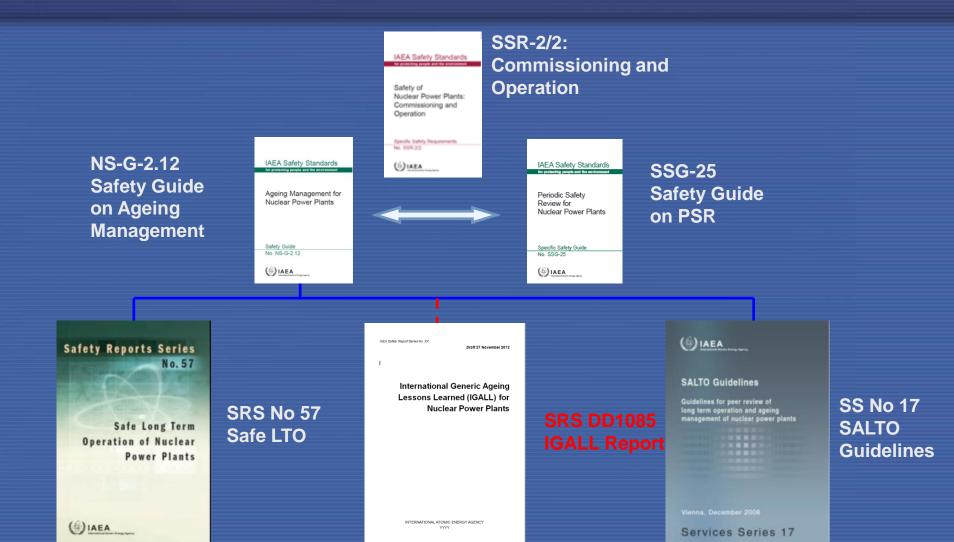
- a. Change of political and public acceptance
- b. New safety requirements

How is IAEA supporting a safe LTO of NPPs?

1. Establishment of related IAEA Safety Standards

- 2. Fostering information exchange and establishing databases
 - a. **IGALL Programme** (second part of presentation)
 - b. AM and LTO workshops
 - c. SALTO methodology and experience transfer workshops
 - d. CRP Coordinated Research Projects
- 3. Provision of peer review service (SALTO* peer review service) to assist Member States in application of related Safety Standards

^{*} SALTO – Safety Aspect of Long Term Operation



Benefits of SALTO Peer Review Service for NPPs

- 1. Review of compliance with IAEA standards and international best practices
- 2. Recommendations for improvement to reach the compliance
- 3. Opportunity for NPP staff to discuss their practices with experienced experts
- 4. Strengthening of public confidence to NPP
- 5. Support in licensing renewal procedure (or extension of operational permission procedure)

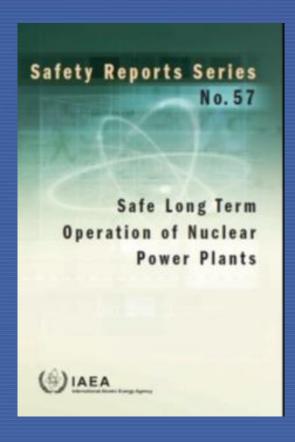
Safety Standards on Ageing Management and LTO

Safety Guide on Ageing Management

Ageing Management for Nuclear Power Plants

Safety Guide No. NS-G-2.12

Objective


 To provide a set of guidelines and recommendations for managing ageing of Systems Structures and Components (SSCs) important to safety in nuclear power plants.

Scope

- SSCs in NPPs.
- Mainly focused on physical ageing but also includes management of obsolescence.
- Published in 2009

Safety Report No. 57 "Safe Long Term Operation of Nuclear Power Plants"

- Key elements from the EBP SALTO final reports and provide guidance on LTO Main basis of the SALTO peer review
- Published in 2008
- Table of contents
 - 1. INTRODUCTION
 - 2. OVERVIEW
 - 3. LTO FEASIBILITY
 - 4. SCOPING AND SCREENING
 - 5. ASSESSMENT AND MANAGEMENT OF STRUCTURES AND COMPONENTS FOR AGEING DEGRADATION FOR LTO
 - 6. REVALIDATION OF SAFETY ANALYSES THAT **USED TIME LIMITED ASSUMPTIONS**
 - 7. DOCUMENTATION
 - 8. REGULATORY OVERSIGHT

SALTO Peer Review Guidelines

SALTO Guidelines

Guidelines for peer review of long term operation and ageing management of nuclear power plants

Vienna, December 2008

Services Series 17

- Aims to provide a basic structure and common reference across the various areas covered by a SALTO peer review mission
- Initially developed for SALTO peer review team members, but also provides guidance to a host organization in preparation to a peer review mission
- Edition 2013 will be available soon

Steps of the SALTO Peer Review Service

Phase 0: Workshop/seminar on IAEA safety standards and SALTO methodology (optional)

Phase 1: NPP in preparation for LTO – programme, assessment,

action items scheduling

Step 1: Preparatory Meeting 1

Pre-SALTO Mission* Step 2:

(performed 10-2 years before entering LTO period)

Preparatory Meeting 2 Step 3:

SALTO Mission** Step 4:

(performed 2-0 years before entering LTO period)

Step 5: Follow-up SALTO Mission

^{**}Originally called "Full scope SALTO mission"

Time schedule of the SALTO Peer Review Service

Step 1: Preparatory Meeting 1

Step 3: Preparatory Meeting 2

Step 2: Pre-SALTO Mission

3rd-5th year

1st year

Step 4: SALTO Mission

Step 5: Follow-up SALTO Mission

9 days

2-3 days

2-3 days

8 days

6-9 months thereafter

6-9 months thereafter

4 days

18-24 months thereafter

Standard SALTO Peer Review scope

- Area A Organisation and functions, current licensing basis, configuration/ modification management;
- Area B Scoping and screening and plant programmes relevant to LTO;
- Area C Ageing management review, review of AMPs and related TLAAs for mechanical components;
- Area D Ageing management review, review of AMPs and related TLAAs for electrical and I&C components;
- Area E Ageing management review, review of AMPs and related TLAAs for civil structures;
- Area F Human resources, competence and knowledge management for LTO.

SALTO Peer Review – working with counterparts

Entrance meeting

Plant walk-downs

Daily interviews

Exit meeting

SALTO workshops/seminars

Country	Туре	Date	Plant
China	SALTO workshop	March 2013	Qinshan 1
Mexico	SALTO workshop	May 2013	Laguna Verde
Bulgaria	SALTO workshop	June 2013	Kozloduy 5&6
Canada	SALTO workshop	July 2013	CNSC
Sweden	SALTO workshop	September 2013	Ringhals 1&2
China	SALTO workshop	November 2013	Daya Bay
Japan	SALTO workshop	December 2013	Multiply NPPs
Sweden	SALTO workshop	December 2013	Oskarshamn

Current IAEA SALTO related projects

- Armenia: AM and Remaining Life Time Assessment of ANPP's SSC (2012 – 2015)
- Bulgaria: Assistance in Preparation of Life Time Extension Programme of Units 5 & 6 of Kozloduy NPP – (2012 – 2013)
- Mexico&Brazil: Enhancing Plant Life Mamagement and Safety Culture Practices in the NPPs of Latin America - (2013 – 2016)

SALTO missions in 2005 - 2012

- Paks NPP Pre-SALTO and SALTO 7x (Hungary, 2005 2011)
- Karachi NPP Pre-SALTO (Pakistan, 2007)
- South Ukraine NPP Pre-SALTO (Ukraine, 2007)
- Kori 1 NPP SALTO (Republic of Korea, 2007)
- Dukovany NPP Pre-SALTO (Czech Republic, 2008)
- Borssele NPP Pre-SALTO (the Netherlands, 2009)
- Kori 1 NPP SALTO Follow-up (Republic of Korea, 2010)
- Koeberg NPP Pre-SALTO (South Africa, 2011)
- Dukovany NPP SALTO Follow-up (Czech Republic, 2011)
- Borssele NPP SALTO + SALTO Follow-up (the Netherlands, 2012)
- Wolsong 1 NPP SALTO (Republic of Korea, 2012)
- Tihange 1 NPP Pre-SALTO (Belgium, 2012)

Planned SALTO missions for 2013 - 2014

Country	Туре	Date	Plant
Hungary	SALTO follow-up	April 2013	Paks 1-4
Armenia	Pre-SALTO	April 2013	Armenian 2
Brasil	Pre-SALTO	November 2013	Angra 1
Netherlands	SALTO follow-up	February 2014	Borssele
Sweden	Pre-SALTO	March 2014	Ringhals 1, 2
South Korea	SALTO follow-up	April 2014	Wolsong 1
Belgium	SALTO	October 2014	Tihange 1
Czech Rep.	SALTO	November 2014	Dukovany 1-4

Foreseen SALTO missions for 2015 - 2016

Country	Туре	Date	Plant
Mexico	Pre-SALTO	March 2015	Laguna Verde
Armenia	SALTO follow-up	July 2015	Armenian 2
Brasil	Pre-SALTO	November 2015	Angra 1
Bulgaria	Pre-SALTO	November 2015	Kozloduy 5&6
Sweden	SALTO	1.Q 2016	Ringhals 2
Czech Rep.	SALTO follow-up	2016	Dukovany 1-4
Sweden	SALTO	4.Q 2016	Ringhals 1
Belgium	SALTO follow-up	2016	Tihange 1
Armenia	SALTO	March or December 2016	Armenian 2

IAEA Activities in LTO area

IGALL (International Generic Ageing Lessons Learned) Programme

Robert Krivanek – R.Krivanek@iaea.org
Project manager for LTO
Division of Nuclear Installation Safety

Objectives of IGALL Programme

- Establishment of a state-of-the-art IGALL report, as guidance on recommendable ageing management programmes.
- Basis for implementation of recommendable AMPs for NPPs with diverse technologies: PWR, BWR, WWER, CANDU, PHWR.
- The IGALL report would be updated and upgraded periodically at least every 5 years.
- Fundamental document supporting a systematic approach to managing of ageing as described in the Safety Guide NS-G-2.12.

IGALL - Phase 1

Scoping Meeting/ Briefing for PMs of the MSs

Launching of the Programme

Progress of the programme in accordance with time schedule

operators

Organization set-up

> Steering Group

Working Groups

2011-12

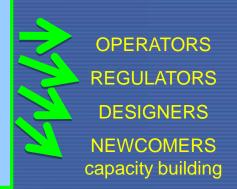
regulators

vendors

1st - 2nd Q 2010


2nd -3rd Q 2010

International Generic Ageing Lessons Learned Programme (IGALL)


Degradation mechanisms + ageing effects

IGALL

Catalogue of generic AMPs and TLAAs

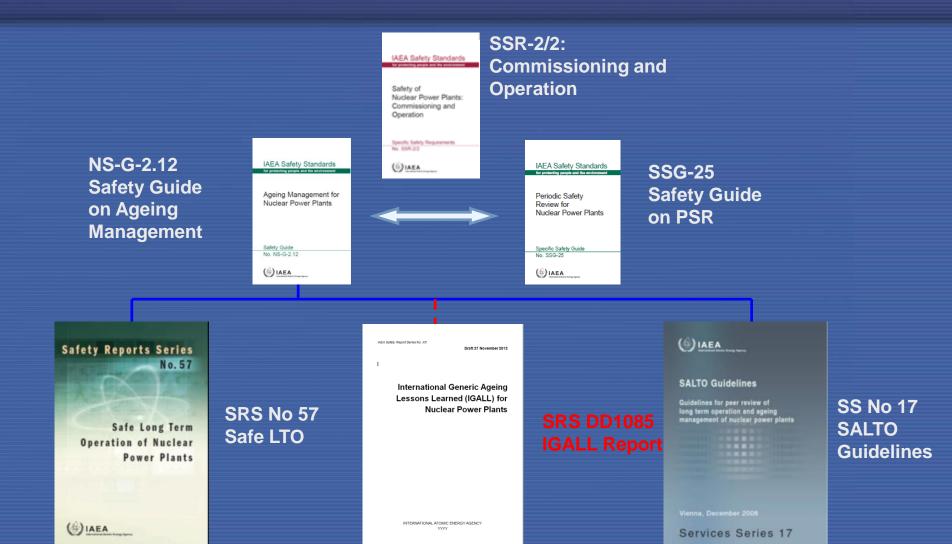
- Collection of "proven" AMPs*
- Collection of typical TLAAs*
- Identifies relevant AMPs and TLAAs for safety SSCs
- 9 attributes of AMPs
- i, ii, iii solutions of TLAAs

CANDU

* AMPs – Ageing Management Programmes

TLAAs – Time Limited Ageing Analysis

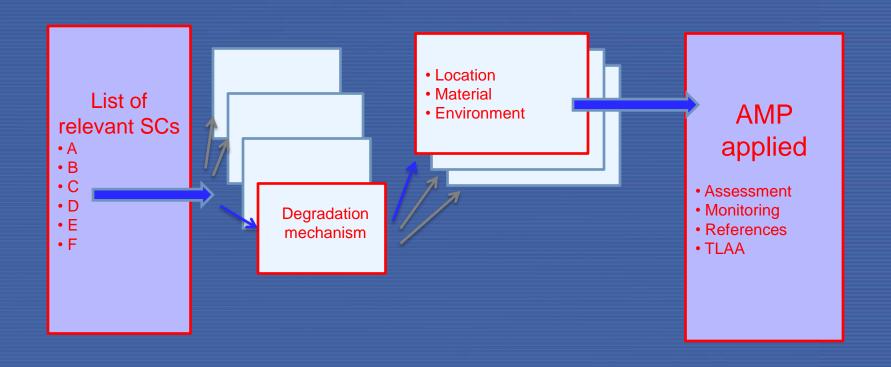
IGALL Programme


Participation of Member States as for 2013

- Argentina
- Belgium
- Brazil
- Canada
- China
- Czech Republic
- France
- Germany
- Hungary
- India
- Japan

- Mexico
- The Netherlands
- Russian Federation
- Slovak Republic
- Spain
- Sweden
- Switzerland
- Ukraine
- United States of America
- European Commission
- Finland invited as observer
- Korea provided data

Safety Standards on Ageing Management and LTO


IGALL Safety Report

- IGALL Final Report will be published as an IAEA SAFETY REPORT in
 1. Q 2014
- IGALL database on IAEA web sites contains:
 - 76 Ageing Management Programmes (AMPs)
 - 27 Time Limited Ageing Analysis (TLAAs)
 - More than 2400 consolidated line items in AMR tables (totally more 7000 line items collected from MS)
- Link to IGALL public database:

http://gnssn.iaea.org/NSNI/PoS/IGALL/SitePages/Home.aspx

International GALL - Logical schema

Comparison of IGALL with GALL, Rev. 2

1) General differences

- Passive but also active safety related SSCs
- Covering all water moderated reactor designs PWR (incl. WWER), BWR, CANDU, PHWR
- Collection of all "proven" AMPs
- Description of typical TLAAs
- AMR tables more than one AMP or TLAA may occur as a recommended solution based on different MS approaches
- AMP nine IAEA attributes used to describe AMP

Comparison of IGALL with GALL, Rev. 2

2) AMPs

- IGALL 76 AMPs x 50 GALL AMPs
- Additional IGALL AMPs :
 - Fatigue Monitoring
 - Reactor Coolant Pump
 - Containment Bellows
 - Environmental Qualification
 - Active and passive electrical and I&C commodity groups
 - Non-metallic Liner
 - Ground Movement Surveillance
 - Containment Monitoring System
 - Concrete Expansion Detection and Monitoring System
 - Containment Pre-stressing System
 - CANDU/PHWR mechanical AMPs (8)

Comparison of IGALL with GALL, Rev. 2

3) TLAAs

- Description of typical TLAAs:
 - Mechanical components 22 TLAAs
 - Electrical and I&C components 1 TLAA
 - Civil structures 4 TLAAs

IGALL Phase 2 – 2014 - 2015

IGALL Objectives and activities in 2014-2015:

- 1) Provide forum for exchange of experience and support to MS in applying IGALL as a tool to address AM and safe LTO:
 - a. Organize workshops, expert missions to explain to regulators and utilities how to apply IGALL
 - b. Assist MS to implement IGALL in pilot plants (BWR, CANDU/PHWR, PWR, WWER) – workshops of IAEA, regulators and industry
 - c. Extend this experience to other MS with the same technology

IGALL Phase 2 Objectives and Activities

- 2) Enhance the completeness of IGALL:
 - a. CANDU mechanical components (CAN, ARG, PAK, IND, ROM)
 - b. WWER mechanical components (UKR, SVK, CZE, HUN, FIN, BUL, EU, RUS, ARM)
 - c. Active I&C and electrical components (SPA, SWE, BRA, JPN, ARG, GER, HUN, FRA, BEL, CHI, NED, RUS)
 - d. Management of technological obsolescence (SPA, JPN, MEX, BRA, ARG, CZE, PAK, SVK, FRA, IND, BEL, ROM, SWE, SWI, NED, RUS, ARM)

Thank you for your attention!

