

SOLID STATE DOSIMETRY: State of Art

Helen Khoury hjkhoury@gmail.com

17th International Conference on Solid State Dosimetry MarHotel - Boa Viagem - Recife - Brazil Rua Barão de Souza Leão, nº 451

> Participant Login | Abstract Book September 22 - 27, 2013

It is my great pleasure to invite you to the 17th Solid State Dosimetry Conference, which will be held in Recife, an important, large and modern city, capital of the Pernambuco State, located in the Northeast Region of Brazil.

SOLID STATE DOSIMETRY

Luminescent detectors (TLD, OSL, RPL) Semiconductor detectors EPR detectors Track detectors Gel dosimetry Superheated emulsions Radiochromic dyes

Dosimetria e Instrumentação DEN - UFPE

THERMOLUMINESCENT DOSIMETRY

• LiF:Mg,Ti (TLD-100) • LiF:Mg, Cu, P (GR-200) \circ CaF₂ • CaSO₄:Dy • CaSO₄:Tm • $Li_2B_4O_7$ • $MgB_4O_7:Dy$ \circ MgB₄O₇:Tm \circ Al₂O₃ ~1950 • α -Al₂O₃:C Urals Politec. Inst. (Russia), 1990

CONVENTIONAL CRYSTAL GROWING TECHNIQUES

- Czochralski or Vernuil

Czochralski

Al₂O₃ F.P.= 2050°C

COMBUSTION SYNTHESIS

 Synthesis is based on the heat released from the redox chemical reaction (1500-6500K), instead of using high-temperature muffle furnaces.

DEN - UFPE

COMBUSTION SYNTHESIS

o 1 - The samples were prepared by mixing:

- Aluminium nitrate $(AI(NO_3)_3.9H_2O)$,
- Urea (CO(NH₂)₂) as fuel
- Dopants:
 - Europium nitrate (Eu(NO₃)₃)
 - Terbium nitrate (Tb(NO₃)₃)
 - TEOS (C₈H₂₀O₄Si)

o 2 - Evaporation of the excess water

3 – Sample was transferred to a pre-heated muffle furnace

• 4 - Combustion after a few minutes

• Resulting material

• Samples are pelleted

Dosimetria e Instrumentação DEN - UFPE

QUARTZ

• High temperature peak used for dating

Dosimetria e Instrumentação DEN - UFPE

RECENT RESEARCHS

Natural quartz sensitized by heat and gamma radiation

(KHOURY et al., Radiation Effects and Defects in Solids, v. 162, pp. 101-107, 2007

TL GLOW CURVE OF QPS-100 DOSIMETER IRRADIATED WITH X-RAY - MAMMOGRAPHY

Dosimetria Instrumentag DEN - UFPI

y = ax + b	QPS-100			TLD-100			
Beam	a	b	R ²	a	b	R ²	
RXW28	1,663	0,448	0,997	0,182	0,135	0,999	
RXW35	1,797	0,461	0,997	0,197	0,147	0,999	

HIGH DOSES DOSIMETRY

Dosimetria e nstrumer DEN - U

TL Response of the dosimeter MTS irradiated with gamma radiation of Co-60

Fig. 3. Fully deconvoluted glow curves of MTS dosimeters at gamma doses of (a) 1 kGy and (b) 20 kGy.

H.J. Khoury a,*, B. Obryk b, V.S. Barros a, P.L. Guzzo c, C.G. Ferreira a, P. Bilski b, P. Olko - Radiation Measurements 46 (2011) 1878e1881

DEN - UFPE

TL system for 2-D dosimetry for radiotherapy

TLD foils

Measured 2-D dose distribution

Thermoluminescent TL reader with CCD camera developed at IFJ

R. Kopec-SSD-17

Dosimetria e

- -Type: MCP-N (LiF:Mg,Cu,P) powder with ETFE
- -Shape: square 30 mm x30 mm and thickness 0.3 mm
- -Spatial resolution: 0.1 mm

Thermoluminescence foils

Examples of 2D images - dose distribution.

Mariusz Klosowski, IFJ PAN

2D TLD film for characterization of clinical proton beams

Retrospective Dosimetry

Ian Bailif-SSD-17-2013

Construction of thick-film chip resistor

lan Bailiff 2013

1	Alumina Substrate			
2	Bottom Electrode (Ag-Pd)			
3	Top Electrode (Ag)			
4	Edge Electrode (NiCr)			
5	Barrier Layer (Ni)			
6	External Electrode (Sn)			
7	Resistor Layer (RuO ₂ /Ag)			
8	Primary Overcoat (Glass)			
9	Secondary Overcoat (Epoxy)			

SEM image: BSE

 Table 1 | Compilation of the main characteristics of all materials usable for retrospective and/or accident dosimetry, using luminescence techniques. The fading rates of capacitors and integrated circuits are reported here for measurements at room temperature without preheat. Tooth enamel and dental ceramics are not listed in this table, as only an (not yet existing) in vivo application would be useful for these materials

Materials	Zero dose signal	Dose response	Fading	Minimum detectable dose (mGy)	Type of dose	Ubiquity	Processing time
Bricks, tiles, porcelain	No	Linear up to several Gy	No	25	local	high	Days to weeks
Cement, mortar	No	Linear up to several Gy	No	> 100	local	high	Days to weeks
Chemicals	< 10 mGy	region of linearity dependent on material	Negligible for most materials	1-20	local	moderate	< 1 h
chip cards with translucent encapsulation	Yes (TL) No (OSL)	Linear up to 7 Gy	70-80% in 10 days	3-20	individual	low	< 1 h
Alumina rich resistors	No	Linear up to 90 Gy	50% in 10 days	< 10	individual	high	< 1 h
Capacitors	No	Linear up to 160 Gy	50% after 10 h	< 700	individual	moderate	< 1 h
Integrated circuits	No	Linear up to 160 Gy	50% after 10 h	< 700	individual	high	< 1 h
Glass in monitor displays	Yes/No	Linear up to 200 Gy	40% in 1 day, slow decay after	< 1000	individual	high	< 1 h
Watch glasses	Yes/No	Linear up to 200 Gy	40% in 1 day, slow decay after	< 1000	individual	high	< 1 h

Ian Bailif-SSD-17-2013

FUTURE WORK

Investigation of luminescence mechanisms

an Bailiff 2013

- > Optimum procedure for determining absorbed dose
- Convert dose in chip to dose in air (computational modeling and phantom irradiation)
- 0

UFPE

0

 Blind tests with irradiated phones in known gamma radiation field

• Interlaboratory comparisons (EURODOS group)

Optically Stimulated Luminescence is a related phenomenon in which the luminescence is stimulated by the absorption of optical energy rather than thermal energy

OSL- OPTICALLY STIMULATED LUMINESCENCE

Dosimetria e Instrumentação DEN - UFR

Methods of OSL stimulation

CW-OSL (continuous wave OSL)

POSL (pulsed OSL)

LM-OSL (linearly modulated OSL)

OPTICALLY STIMULATED LUMINESCENCE

Dosimetria e Instrumentação DEN - UFPE

.....or <u>Pulsed</u> – POSL

DEN - UFPE

OSL EQUIPMENT

Risø DTU

Landauer

Lexsyg

HOMEMADE READER

GDOIN-DEN-UFPE

Dosimetria e Instrumentação DEN - UFPE

OSL DOSIMETERS

: OSL strip and dosemeters.

The new 'nanoDot' and adaptor for readout in the microStar reader.

Dosimetria e Instrumentação DEN - UFPE

OSL DOSIMETRY

Advantages

- High sensitivity
- High precision
- Size
- Convenience
- Readout flexibility
- Fast, non-destructive readout
- Narrow stimulating beams may could allow dose mapping
- No significant fading dose storage
- No need for annealing
- Although it can be bleached and re-used if needed*

Disadvantages

- Sensitivity to light
- Non-tissue equivalent energy dependence
- Only 1 material currently available (only 1 provider)

DEN - UFPE

> SPACE

> MEDICAL

> PERSONAL DOSIMETRY

> DATING

Characteristics of Al₂O₃:C OSLDs for radiotherapy applications

Ideal detector

- Small size
- Good reproducibility
- None or well defined environmental corrections
- Dose linearity
- Dose rate independence
- Energy independence

 No directional dependence -isotropic response to radiation

Clinical dosimetry applications

- In phantom
 - PDD
 - ROF
 - -IMRT QA

- In vivo
 - -external beam (entrance, exit dose)-brachytherapy

The small Al_2O_3 : C crystals

Figure 5.37 Afterloader with ¹⁹²Ir source and guide tubes used in the brachytherapy treatment. The right-hand figure indicates the position of the OSL probes (A and B). Reprinted from Andersen et al. (2009b) with permission from Medical Physics Publishing.

CHARACTERISTICS OF AL₂O₃:C OSL DOSIMETER

Dosimetria e Instrumentação DEN - UFPE

OSLD dose linearity, 6 MV

Viamonte et al Med. Phys. 35(4), 1261-6, 2008

M.R. Baril / Radiation Measurements 38 (2004) 81-86

 Some kinds of glasses irradiated with the ionizing radiation show emission of visible photons when excited by UV light. This phenomenon is usually called the radio-photoluminescence (RPL).

Material: Silver activated metaphosphate glass Effect:

- Ionizing radiation creates radiophotoluminescence centers
- Colorization

<u>Analysis:</u>

- Luminescence intensity after UV-light exposure
- Optical density

Ag⁺ + e \rightarrow Ag⁰ (electron capture) Ag⁺ + hPO₄ \rightarrow Ag⁺⁺ (hole capture)

55

Radiophotoluminescence

Dosimetria e

The silver activated phosphate glass irradiated with ionizing radiations emits luminescence when exposed to UV light.

This phenomenon is called RPL.

Dosimetry with luminescent glass

At present, the most common type of glass in RPL Dosimetry is FD-7. The AgPO4 in silver activated phosphate glass of FD-7 can be viewed as Ag+ and PO4

Energy Levels of RPL Centers

Energy gained by electrons from the pulse ultra-violet laser is not high enough to let electron escape from color centers. Therefore these electrons will not return to the valence band of the glass material directly.

FIGURE 4. Typical RPL emission and excitation spectra of Ag+-doped phosphate glass after x-ray irradiation

• The luminescence centers never disappear after reading out the accumulated data by UV light again and over again. This is the most different characteristic of the RPL from that of the thermally stimulated luminescence (TSL or TL) and the optically stimulated luminescence (OSL).

UV off

The most characteristic features of the glass dosimeters are data accumulation and no fading.

UV on

The glass dosimeter always measures the integrated dose, and so if one wants to know, for example, only today's exposure dose, one has to subtract the accumulated dose till yesterday from the total dose observed today. This is the remarkably different point from TLD and OSLD.

Dosimetria e Instrumentação DE

Chemo-luminescence 2.

Predose with long decay

[µs]

t

The glass dosimeter does not utilize the spectrum of the RPL but observe the decay curve of the RPL excited by a short-pulsed UV laser beam

Dosimetria e Instrumentação

The decay curve could be divided into three parts.

The first intensive peak might be attributed to the PL inherent in the glass and would decay out within 1µs.

The true RPL signal would decay in 40µs and

the long decay small signal of the order of 1 ms would correspond to the pre-dose due to the surface dirt of the glass.

The energy dependence curves for GD-302M, GD-352M, and TLD-100H

Dosimetria e Instrumentação DEN - UF

THE CHARACTERISTICS COMPARISONS OF TLD, OSLD, AND RPL

	TLD	OSLD	RPLGD
Principe of measurement	luminescence signal	optically stimulated luminescence signal	radiophotoluminescence signal
Luminescence material	crystal	crystal	glass
Excitation source	heat	visible light	ultra-violet laser
Sensitivity	material- dependent	material-dependent	good
Repeatable readout	no	yes, but intensity reduced	yes, with the same intensity
Range of measurement	material- dependent (10µGy - 10 Gy)	material-dependent (10μGy - 10 Gy)	10µGy - 10 Gy 1 Gy - 500 Gy
Geometrical shape	chip and powder	powder	various shapes
Fading effect	material- dependent (5 - 20 % / quarter)	material-dependent (0 - 10 %/year)	less than 5%/year
Energy dependence	material- dependent	material-dependent	± 20% (having energy compensation filter)

Dosimetria e Instrumentação DEN - UFPE

Thank You

